Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword dimension function

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2013 (vol 56 pp. 745)

Fu, Xiaoye; Gabardo, Jean-Pierre
Dimension Functions of Self-Affine Scaling Sets
In this paper, the dimension function of a self-affine generalized scaling set associated with an $n\times n$ integral expansive dilation $A$ is studied. More specifically, we consider the dimension function of an $A$-dilation generalized scaling set $K$ assuming that $K$ is a self-affine tile satisfying $BK = (K+d_1) \cup (K+d_2)$, where $B=A^t$, $A$ is an $n\times n$ integral expansive matrix with $\lvert \det A\rvert=2$, and $d_1,d_2\in\mathbb{R}^n$. We show that the dimension function of $K$ must be constant if either $n=1$ or $2$ or one of the digits is $0$, and that it is bounded by $2\lvert K\rvert$ for any $n$.

Keywords:scaling set, self-affine tile, orthonormal multiwavelet, dimension function

2. CMB 2011 (vol 56 pp. 354)

Hare, Kathryn E.; Mendivil, Franklin; Zuberman, Leandro
The Sizes of Rearrangements of Cantor Sets
A linear Cantor set $C$ with zero Lebesgue measure is associated with the countable collection of the bounded complementary open intervals. A rearrangment of $C$ has the same lengths of its complementary intervals, but with different locations. We study the Hausdorff and packing $h$-measures and dimensional properties of the set of all rearrangments of some given $C$ for general dimension functions $h$. For each set of complementary lengths, we construct a Cantor set rearrangement which has the maximal Hausdorff and the minimal packing $h$-premeasure, up to a constant. We also show that if the packing measure of this Cantor set is positive, then there is a rearrangement which has infinite packing measure.

Keywords:Hausdorff dimension, packing dimension, dimension functions, Cantor sets, cut-out set
Categories:28A78, 28A80

© Canadian Mathematical Society, 2014 :