Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword dimension

  Expand all        Collapse all Results 1 - 25 of 37

1. CMB Online first

Laterveer, Robert
A brief note concerning hard Lefschetz for Chow groups
We formulate a conjectural hard Lefschetz property for Chow groups, and prove this in some special cases: roughly speaking, for varieties with finite-dimensional motive, and for varieties whose self-product has vanishing middle-dimensional Griffiths group. An appendix includes related statements that follow from results of Vial.

Keywords:algebraic cycles, Chow groups, finite-dimensional motives
Categories:14C15, 14C25, 14C30

2. CMB Online first

Kitabeppu, Yu; Lakzian, Sajjad
Non-branching RCD$(0,N)$ Geodesic Spaces with Small Linear Diameter Growth have Finitely Generated Fundamental Groups
In this paper, we generalize the finite generation result of Sormani to non-branching $RCD(0,N)$ geodesic spaces (and in particular, Alexandrov spaces) with full support measures. This is a special case of the Milnor's Conjecture for complete non-compact $RCD(0,N)$ spaces. One of the key tools we use is the Abresch-Gromoll type excess estimates for non-smooth spaces obtained by Gigli-Mosconi.

Keywords:Milnor conjecture, non negative Ricci curvature, curvature dimension condition, finitely generated, fundamental group, infinitesimally Hilbertian
Categories:53C23, 30L99

3. CMB Online first

Gao, Zenghui
Homological Properties Relative to Injectively Resolving Subcategories
Let $\mathcal{E}$ be an injectively resolving subcategory of left $R$-modules. A left $R$-module $M$ (resp. right $R$-module $N$) is called $\mathcal{E}$-injective (resp. $\mathcal{E}$-flat) if $\operatorname{Ext}_R^1(G,M)=0$ (resp. $\operatorname{Tor}_1^R(N,G)=0$) for any $G\in\mathcal{E}$. Let $\mathcal{E}$ be a covering subcategory. We prove that a left $R$-module $M$ is $\mathcal{E}$-injective if and only if $M$ is a direct sum of an injective left $R$-module and a reduced $\mathcal{E}$-injective left $R$-module. Suppose $\mathcal{F}$ is a preenveloping subcategory of right $R$-modules such that $\mathcal{E}^+\subseteq\mathcal{F}$ and $\mathcal{F}^+\subseteq\mathcal{E}$. It is shown that a finitely presented right $R$-module $M$ is $\mathcal{E}$-flat if and only if $M$ is a cokernel of an $\mathcal{F}$-preenvelope of a right $R$-module. In addition, we introduce and investigate the $\mathcal{E}$-injective and $\mathcal{E}$-flat dimensions of modules and rings. We also introduce $\mathcal{E}$-(semi)hereditary rings and $\mathcal{E}$-von Neumann regular rings and characterize them in terms of $\mathcal{E}$-injective and $\mathcal{E}$-flat modules.

Keywords:injectively resolving subcategory, \mathcal{E}-injective module (dimension), \mathcal{E}-flat module (dimension), cover, preenvelope, \mathcal{E}-(semi)hereditary ring
Categories:16E30, 16E10, 16E60

4. CMB 2015 (vol 58 pp. 664)

Vahidi, Alireza
Betti Numbers and Flat Dimensions of Local Cohomology Modules
Assume that $R$ is a commutative Noetherian ring with non-zero identity, $\mathfrak{a}$ is an ideal of $R$ and $X$ is an $R$--module. In this paper, we first study the finiteness of Betti numbers of local cohomology modules $\operatorname{H}_\mathfrak{a}^i(X)$. Then we give some inequalities between the Betti numbers of $X$ and those of its local cohomology modules. Finally, we present many upper bounds for the flat dimension of $X$ in terms of the flat dimensions of its local cohomology modules and an upper bound for the flat dimension of $\operatorname{H}_\mathfrak{a}^i(X)$ in terms of the flat dimensions of the modules $\operatorname{H}_\mathfrak{a}^j(X)$, $j\not= i$, and that of $X$.

Keywords:Betti numbers, flat dimensions, local cohomology modules
Categories:13D45, 13D05

5. CMB 2015 (vol 58 pp. 519)

Kang, Su-Jeong
Refined Motivic Dimension
We define a refined motivic dimension for an algebraic variety by modifying the definition of motivic dimension by Arapura. We apply this to check and recheck the generalized Hodge conjecture for certain varieties, such as uniruled, rationally connected varieties and a rational surface fibration.

Keywords:motivic dimension, generalized Hodge conjecture
Categories:14C30, 14C25

6. CMB 2015 (vol 58 pp. 402)

Tikuisis, Aaron Peter; Toms, Andrew
On the Structure of Cuntz Semigroups in (Possibly) Nonunital C*-algebras
We examine the ranks of operators in semi-finite $\mathrm{C}^*$-algebras as measured by their densely defined lower semicontinuous traces. We first prove that a unital simple $\mathrm{C}^*$-algebra whose extreme tracial boundary is nonempty and finite contains positive operators of every possible rank, independent of the property of strict comparison. We then turn to nonunital simple algebras and establish criteria that imply that the Cuntz semigroup is recovered functorially from the Murray-von Neumann semigroup and the space of densely defined lower semicontinuous traces. Finally, we prove that these criteria are satisfied by not-necessarily-unital approximately subhomogeneous algebras of slow dimension growth. Combined with results of the first-named author, this shows that slow dimension growth coincides with $\mathcal Z$-stability, for approximately subhomogeneous algebras.

Keywords:nuclear C*-algebras, Cuntz semigroup, dimension functions, stably projectionless C*-algebras, approximately subhomogeneous C*-algebras, slow dimension growth
Categories:46L35, 46L05, 46L80, 47L40, 46L85

7. CMB 2014 (vol 57 pp. 814)

Hou, Ruchen
On Global Dimensions of Tree Type Finite Dimensional Algebras
A formula is provided to explicitly describe global dimensions of all kinds of tree type finite dimensional $k-$algebras for $k$ an algebraic closed field. In particular, it is pointed out that if the underlying tree type quiver has $n$ vertices, then the maximum of possible global dimensions is $n-1$.

Keywords:global dimension, tree type finite dimensional $k-$algebra, quiver
Categories:16D40, 16E10, , 16G20

8. CMB 2014 (vol 57 pp. 673)

Ahmadi, S. Ruhallah; Gilligan, Bruce
Complexifying Lie Group Actions on Homogeneous Manifolds of Non-compact Dimension Two
If $X$ is a connected complex manifold with $d_X = 2$ that admits a (connected) Lie group $G$ acting transitively as a group of holomorphic transformations, then the action extends to an action of the complexification $\widehat{G}$ of $G$ on $X$ except when either the unit disk in the complex plane or a strictly pseudoconcave homogeneous complex manifold is the base or fiber of some homogeneous fibration of $X$.

Keywords:homogeneous complex manifold, non-compact dimension two, complexification

9. CMB 2013 (vol 57 pp. 245)

Brodskiy, N.; Dydak, J.; Lang, U.
Assouad-Nagata Dimension of Wreath Products of Groups
Consider the wreath product $H\wr G$, where $H\ne 1$ is finite and $G$ is finitely generated. We show that the Assouad-Nagata dimension $\dim_{AN}(H\wr G)$ of $H\wr G$ depends on the growth of $G$ as follows: \par If the growth of $G$ is not bounded by a linear function, then $\dim_{AN}(H\wr G)=\infty$, otherwise $\dim_{AN}(H\wr G)=\dim_{AN}(G)\leq 1$.

Keywords:Assouad-Nagata dimension, asymptotic dimension, wreath product, growth of groups
Categories:54F45, 55M10, 54C65

10. CMB 2013 (vol 57 pp. 335)

Karassev, A.; Todorov, V.; Valov, V.
Alexandroff Manifolds and Homogeneous Continua
ny homogeneous, metric $ANR$-continuum is a $V^n_G$-continuum provided $\dim_GX=n\geq 1$ and $\check{H}^n(X;G)\neq 0$, where $G$ is a principal ideal domain. This implies that any homogeneous $n$-dimensional metric $ANR$-continuum is a $V^n$-continuum in the sense of Alexandroff. We also prove that any finite-dimensional homogeneous metric continuum $X$, satisfying $\check{H}^n(X;G)\neq 0$ for some group $G$ and $n\geq 1$, cannot be separated by a compactum $K$ with $\check{H}^{n-1}(K;G)=0$ and $\dim_G K\leq n-1$. This provides a partial answer to a question of Kallipoliti-Papasoglu whether any two-dimensional homogeneous Peano continuum cannot be separated by arcs.

Keywords:Cantor manifold, cohomological dimension, cohomology groups, homogeneous compactum, separator, $V^n$-continuum
Categories:54F45, 54F15

11. CMB 2013 (vol 56 pp. 795)

MacDonald, Mark L.
Upper Bounds for the Essential Dimension of $E_7$
This paper gives a new upper bound for the essential dimension and the essential 2-dimension of the split simply connected group of type $E_7$ over a field of characteristic not 2 or 3. In particular, $\operatorname{ed}(E_7) \leq 29$, and $\operatorname{ed}(E_7;2) \leq 27$.

Keywords:$E_7$, essential dimension, stabilizer in general position
Categories:20G15, 20G41

12. CMB 2013 (vol 57 pp. 159)

Oral, Kürşat Hakan; Özkirişci, Neslihan Ayşen; Tekir, Ünsal
Strongly $0$-dimensional Modules
In a multiplication module, prime submodules have the property, if a prime submodule contains a finite intersection of submodules then one of the submodules is contained in the prime submodule. In this paper, we generalize this property to infinite intersection of submodules and call such prime submodules strongly prime submodule. A multiplication module in which every prime submodule is strongly prime will be called strongly 0-dimensional module. It is also an extension of strongly 0-dimensional rings. After this we investigate properties of strongly 0-dimensional modules and give relations of von Neumann regular modules, Q-modules and strongly 0-dimensional modules.

Keywords:strongly 0-dimensional rings, Q-module, Von Neumann regular module
Categories:13C99, 16D10

13. CMB 2013 (vol 56 pp. 745)

Fu, Xiaoye; Gabardo, Jean-Pierre
Dimension Functions of Self-Affine Scaling Sets
In this paper, the dimension function of a self-affine generalized scaling set associated with an $n\times n$ integral expansive dilation $A$ is studied. More specifically, we consider the dimension function of an $A$-dilation generalized scaling set $K$ assuming that $K$ is a self-affine tile satisfying $BK = (K+d_1) \cup (K+d_2)$, where $B=A^t$, $A$ is an $n\times n$ integral expansive matrix with $\lvert \det A\rvert=2$, and $d_1,d_2\in\mathbb{R}^n$. We show that the dimension function of $K$ must be constant if either $n=1$ or $2$ or one of the digits is $0$, and that it is bounded by $2\lvert K\rvert$ for any $n$.

Keywords:scaling set, self-affine tile, orthonormal multiwavelet, dimension function

14. CMB 2012 (vol 56 pp. 737)

Elliott, George A.; Niu, Zhuang
On the Radius of Comparison of a Commutative C*-algebra
Let $X$ be a compact metric space. A lower bound for the radius of comparison of the C*-algebra $\operatorname{C}(X)$ is given in terms of $\operatorname{dim}_{\mathbb{Q}} X$, where $\operatorname{dim}_{\mathbb{Q}} X $ is the cohomological dimension with rational coefficients. If $\operatorname{dim}_{\mathbb{Q}} X =\operatorname{dim} X=d$, then the radius of comparison of the C*-algebra $\operatorname{C}(X)$ is $\max\{0, (d-1)/2-1\}$ if $d$ is odd, and must be either $d/2-1$ or $d/2-2$ if $d$ is even (the possibility of $d/2-1$ does occur, but we do not know if the possibility of $d/2-2$ also can occur).

Keywords:Cuntz semigroup, comparison radius, cohomology dimension, covering dimension

15. CMB 2012 (vol 56 pp. 683)

Nikseresht, A.; Azizi, A.
Envelope Dimension of Modules and the Simplified Radical Formula
We introduce and investigate the notion of envelope dimension of commutative rings and modules over them. In particular, we show that the envelope dimension of a ring, $R$, is equal to that of the $R$-module $R^{(\mathbb{N})}$. Also we prove that the Krull dimension of a ring is no more than its envelope dimension and characterize Noetherian rings for which these two dimensions are equal. Moreover we generalize and study the concept of simplified radical formula for modules, which we defined in an earlier paper.

Keywords:envelope dimension, simplified radical formula, prime submodule
Categories:13A99, 13C99, 13C13, 13E05

16. CMB 2012 (vol 56 pp. 551)

Handelman, David
Real Dimension Groups
Dimension groups (not countable) that are also real ordered vector spaces can be obtained as direct limits (over directed sets) of simplicial real vector spaces (finite dimensional vector spaces with the coordinatewise ordering), but the directed set is not as interesting as one would like, i.e., it is not true that a countable-dimensional real vector space that has interpolation can be represented as such a direct limit over the a countable directed set. It turns out this is the case when the group is additionally simple, and it is shown that the latter have an ordered tensor product decomposition. In the Appendix, we provide a huge class of polynomial rings that, with a pointwise ordering, are shown to satisfy interpolation, extending a result outlined by Fuchs.

Keywords:dimension group, simplicial vector space, direct limit, Riesz interpolation
Categories:46A40, 06F20, 13J25, 19K14

17. CMB 2012 (vol 56 pp. 491)

Bahmanpour, Kamal
A Note on Homological Dimensions of Artinian Local Cohomology Modules
Let $(R,{\frak m})$ be a non-zero commutative Noetherian local ring (with identity), $M$ be a non-zero finitely generated $R$-module. In this paper for any ${\frak p}\in {\rm Spec}(R)$ we show that $ \operatorname{{\rm injdim_{_{R_{\frak p}}}}} H^{i-\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ and ${\rm fd}_{R_{\p}} H^{i-\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ are bounded from above by $ \operatorname{{\rm injdim_{_{R}}}} H^i_{\frak m}(M)$ and $ {\rm fd}_R H^i_{\frak m}(M)$ respectively, for all integers $i\geq \dim(R/{\frak p})$.

Keywords:cofinite modules, flat dimension, injective dimension, Krull dimension, local cohomology

18. CMB 2012 (vol 56 pp. 630)

Sundar, S.
Inverse Semigroups and Sheu's Groupoid for the Odd Dimensional Quantum Spheres
In this paper, we give a different proof of the fact that the odd dimensional quantum spheres are groupoid $C^{*}$-algebras. We show that the $C^{*}$-algebra $C(S_{q}^{2\ell+1})$ is generated by an inverse semigroup $T$ of partial isometries. We show that the groupoid $\mathcal{G}_{tight}$ associated with the inverse semigroup $T$ by Exel is exactly the same as the groupoid considered by Sheu.

Keywords:inverse semigroups, groupoids, odd dimensional quantum spheres
Categories:46L99, 20M18

19. CMB 2011 (vol 56 pp. 354)

Hare, Kathryn E.; Mendivil, Franklin; Zuberman, Leandro
The Sizes of Rearrangements of Cantor Sets
A linear Cantor set $C$ with zero Lebesgue measure is associated with the countable collection of the bounded complementary open intervals. A rearrangment of $C$ has the same lengths of its complementary intervals, but with different locations. We study the Hausdorff and packing $h$-measures and dimensional properties of the set of all rearrangments of some given $C$ for general dimension functions $h$. For each set of complementary lengths, we construct a Cantor set rearrangement which has the maximal Hausdorff and the minimal packing $h$-premeasure, up to a constant. We also show that if the packing measure of this Cantor set is positive, then there is a rearrangement which has infinite packing measure.

Keywords:Hausdorff dimension, packing dimension, dimension functions, Cantor sets, cut-out set
Categories:28A78, 28A80

20. CMB 2011 (vol 56 pp. 292)

Dai, Mei-Feng
Quasisymmetrically Minimal Moran Sets
M. Hu and S. Wen considered quasisymmetrically minimal uniform Cantor sets of Hausdorff dimension $1$, where at the $k$-th set one removes from each interval $I$ a certain number $n_{k}$ of open subintervals of length $c_{k}|I|$, leaving $(n_{k}+1)$ closed subintervals of equal length. Quasisymmetrically Moran sets of Hausdorff dimension $1$ considered in the paper are more general than uniform Cantor sets in that neither the open subintervals nor the closed subintervals are required to be of equal length.

Keywords:quasisymmetric, Moran set, Hausdorff dimension
Categories:28A80, 54C30

21. CMB 2011 (vol 55 pp. 339)

Loring, Terry A.
From Matrix to Operator Inequalities
We generalize Löwner's method for proving that matrix monotone functions are operator monotone. The relation $x\leq y$ on bounded operators is our model for a definition of $C^{*}$-relations being residually finite dimensional. Our main result is a meta-theorem about theorems involving relations on bounded operators. If we can show there are residually finite dimensional relations involved and verify a technical condition, then such a theorem will follow from its restriction to matrices. Applications are shown regarding norms of exponentials, the norms of commutators, and "positive" noncommutative $*$-polynomials.

Keywords:$C*$-algebras, matrices, bounded operators, relations, operator norm, order, commutator, exponential, residually finite dimensional
Categories:46L05, 47B99

22. CMB 2011 (vol 54 pp. 619)

Dibaei, Mohammad T.; Vahidi, Alireza
Artinian and Non-Artinian Local Cohomology Modules
Let $M$ be a finite module over a commutative noetherian ring $R$. For ideals $\mathfrak{a}$ and $\mathfrak{b}$ of $R$, the relations between cohomological dimensions of $M$ with respect to $\mathfrak{a}, \mathfrak{b}$, $\mathfrak{a}\cap\mathfrak{b}$ and $\mathfrak{a}+ \mathfrak{b}$ are studied. When $R$ is local, it is shown that $M$ is generalized Cohen-Macaulay if there exists an ideal $\mathfrak{a}$ such that all local cohomology modules of $M$ with respect to $\mathfrak{a}$ have finite lengths. Also, when $r$ is an integer such that $0\leq r< \dim_R(M)$, any maximal element $\mathfrak{q}$ of the non-empty set of ideals $\{\mathfrak{a} : \textrm{H}_\mathfrak{a}^i(M) $ is not artinian for some $ i, i\geq r \}$ is a prime ideal, and all Bass numbers of $\textrm{H}_\mathfrak{q}^i(M)$ are finite for all $i\geq r$.

Keywords:local cohomology modules, cohomological dimensions, Bass numbers
Categories:13D45, 13E10

23. CMB 2010 (vol 53 pp. 629)

Chinen, Naotsugu; Hosaka, Tetsuya
Asymptotic Dimension of Proper CAT(0) Spaces that are Homeomorphic to the Plane
In this paper, we investigate a proper CAT(0) space $(X,d)$ that is homeomorphic to $\mathbb R^2$ and we show that the asymptotic dimension $\operatorname{asdim} (X,d)$ is equal to $2$.

Keywords:asymptotic dimension, CAT(0) space, plane
Categories:20F69, 54F45, 20F65

24. CMB 2010 (vol 53 pp. 564)

Watanabe, Yoshiyuki; Suh, Young Jin
On $6$-Dimensional Nearly Kähler Manifolds
In this paper we give a sufficient condition for a complete, simply connected, and strict nearly Kähler manifold of dimension 6 to be a homogeneous nearly Kähler manifold. This result was announced in a previous paper by the first author.

Keywords:Nearly Kähler manifold, 6-dimension, Homogeneous, The 1st Chern Class, Einstein manifolds
Categories:53C40, 53C15

25. CMB 2010 (vol 53 pp. 438)

Chigogidze, A.; Nagórko, A.
Near-Homeomorphisms of Nöbeling Manifolds
We characterize maps between $n$-dimensional Nöbeling manifolds that can be approximated by homeomorphisms.

Keywords:n-dimensional Nöbeling manifold, Z-set unknotting, near-homeomorphism
Categories:55M10, 54F45
   1 2    

© Canadian Mathematical Society, 2015 :