1. CMB Online first
 Bahmanpour, Kamal; Naghipour, Reza

Faltings' finiteness dimension of local cohomology modules over local CohenMacaulay rings
Let $(R, \frak m)$ denote a local CohenMacaulay ring and $I$
a nonnilpotent ideal of $R$. The purpose of this article is
to investigate Faltings' finiteness
dimension $f_I(R)$ and equidimensionalness of certain homomorphic
image of $R$. As a consequence
we deduce that $f_I(R)=\operatorname{max}\{1, \operatorname{ht} I\}$
and if $\operatorname{mAss}_R(R/I)$
is contained in $\operatorname{Ass}_R(R)$, then the ring $R/ I+\cup_{n\geq
1}(0:_RI^n)$ is equidimensional of dimension $\dim R1$.
Moreover, we will obtain a lower bound for injective dimension
of the local cohomology module $H^{\operatorname{ht} I}_I(R)$, in the case
$(R, \frak m)$ is a complete equidimensional local ring.
Keywords:Cohen Macaulay ring, equidimensional ring, finiteness dimension, local cohomology Categories:13D45, 14B15 

2. CMB Online first
 Vetrik, Tomas

The metric dimension of circulant graphs
A subset $W$ of the vertex set of a graph $G$ is called a resolving
set of $G$ if for every pair of distinct vertices $u, v$ of $G$,
there is $w \in W$ such that the~distance of $w$ and $u$ is different
from the distance of $w$ and $v$. The~cardinality of a~smallest
resolving set is called the metric dimension of $G$, denoted
by $dim(G)$. The circulant graph $C_n (1, 2, \dots , t)$ consists
of the vertices $v_0, v_1, \dots , v_{n1}$ and the~edges $v_i
v_{i+j}$, where $0 \le i \le n1$, $1 \le j \le t$ $(2 \le t
\le \lfloor \frac{n}{2} \rfloor)$, the indices are taken modulo
$n$. Grigorious et al. [On the metric dimension of circulant
and Harary graphs, Applied Mathematics and Computation 248 (2014),
4754] proved that $dim(C_n (1,2, \dots , t))
\ge t+1$ for $t \lt \lfloor \frac{n}{2} \rfloor$, $n \ge 3$, and they
presented a~conjecture saying that $dim(C_n (1,2, \dots , t))
= t+p1$ for $n=2tk+t+p$, where $3 \le p \le t+1$. We disprove
both statements. We show that if $t \ge 4$ is even, there exists
an infinite set of values of $n$ such that $dim(C_n (1,2, \dots
, t)) = t$. We also prove that $dim(C_n (1,2, \dots , t)) \le
t + \frac{p}{2}$ for $n=2tk+t+p$, where $t$ and $p$ are even,
$t \ge 4$, $2 \le p \le t$ and $k \ge 1$.
Keywords:metric dimension, resolving set, circulant graph, Cayley graph, distance Categories:05C35, 05C12 

3. CMB 2016 (vol 59 pp. 824)
 Karpenko, Nikita A.

Incompressibility of Products of Pseudohomogeneous Varieties
We show that the conjectural criterion of $p$incompressibility
for products of projective homogeneous varieties in terms of
the factors, previously known in a few special cases only, holds
in general.
Actually, the proof goes through for a wider class of varieties
which includes the norm varieties associated to symbols in Galois
cohomology of arbitrary degree.
Keywords:algebraic groups, projective homogeneous varieties, Chow groups and motives, canonical dimension and incompressibility Categories:20G15, 14C25 

4. CMB 2016 (vol 59 pp. 748)
 Dolžan, David

The Metric Dimension of the Total Graph of a Finite Commutative Ring
We study the total graph of a finite commutative ring. We calculate
its metric dimension in the case when the Jacobson radical of
the ring is nontrivial and we examine the metric dimension of
the total graph of a product of at most two fields, obtaining
either exact values in some cases or bounds in other, depending
on the number of elements in the respective fields.
Keywords:total graph, finite ring, metric dimension Categories:13M99, 05E40 

5. CMB 2016 (vol 59 pp. 403)
 Zargar, Majid Rahro; Zakeri, Hossein

On Flat and Gorenstein Flat Dimensions of Local Cohomology Modules
Let $\mathfrak{a}$ be an ideal of a Noetherian local
ring $R$ and let $C$ be a semidualizing $R$module. For an $R$module
$X$, we denote any of the quantities $\mathfrak{d}_R X$,
$\operatorname{\mathsf{Gfd}}_R X$ and
$\operatorname{\mathsf{G_Cfd}}_RX$ by $\operatorname{\mathsf{T}}(X)$. Let $M$ be an $R$module such that
$\operatorname{H}_{\mathfrak{a}}^i(M)=0$
for all $i\neq n$. It is proved that if $\operatorname{\mathsf{T}}(X)\lt \infty$, then
$\operatorname{\mathsf{T}}(\operatorname{H}_{\mathfrak{a}}^n(M))\leq\operatorname{\mathsf{T}}(M)+n$ and the equality holds whenever
$M$ is finitely generated. With the aid of these results, among
other things, we characterize CohenMacaulay modules, dualizing
modules and Gorenstein rings.
Keywords:flat dimension, Gorenstein injective dimension, Gorenstein flat dimension, local cohomology, relative CohenMacaulay module, semidualizing module Categories:13D05, 13D45, 18G20 

6. CMB 2015 (vol 58 pp. 741)
 Gao, Zenghui

Homological Properties Relative to Injectively Resolving Subcategories
Let $\mathcal{E}$ be an injectively resolving subcategory of
left $R$modules. A left $R$module $M$
(resp. right $R$module $N$) is called $\mathcal{E}$injective
(resp. $\mathcal{E}$flat)
if $\operatorname{Ext}_R^1(G,M)=0$ (resp. $\operatorname{Tor}_1^R(N,G)=0$)
for any $G\in\mathcal{E}$.
Let $\mathcal{E}$ be a covering subcategory.
We prove that a left $R$module $M$ is $\mathcal{E}$injective
if and only if $M$ is a direct sum
of an injective left $R$module and a reduced $\mathcal{E}$injective
left $R$module.
Suppose $\mathcal{F}$ is a preenveloping subcategory of right
$R$modules such that
$\mathcal{E}^+\subseteq\mathcal{F}$ and $\mathcal{F}^+\subseteq\mathcal{E}$.
It is shown that a finitely presented right $R$module $M$ is
$\mathcal{E}$flat if and only if
$M$ is a cokernel of an $\mathcal{F}$preenvelope of a right
$R$module.
In addition, we introduce and investigate the
$\mathcal{E}$injective and $\mathcal{E}$flat dimensions of
modules and rings. We also introduce $\mathcal{E}$(semi)hereditary
rings and $\mathcal{E}$von Neumann regular rings and characterize
them in terms of $\mathcal{E}$injective and $\mathcal{E}$flat
modules.
Keywords:injectively resolving subcategory, \mathcal{E}injective module (dimension), \mathcal{E}flat module (dimension), cover, preenvelope, \mathcal{E}(semi)hereditary ring Categories:16E30, 16E10, 16E60 

7. CMB 2015 (vol 59 pp. 144)
 Laterveer, Robert

A Brief Note Concerning Hard Lefschetz for Chow Groups
We formulate a conjectural hard Lefschetz property
for Chow groups, and prove this in some special cases: roughly
speaking, for varieties with finitedimensional motive, and
for varieties whose selfproduct has vanishing middledimensional
Griffiths group. An appendix includes related statements that
follow from results of Vial.
Keywords:algebraic cycles, Chow groups, finitedimensional motives Categories:14C15, 14C25, 14C30 

8. CMB 2015 (vol 58 pp. 787)
 Kitabeppu, Yu; Lakzian, Sajjad

Nonbranching RCD$(0,N)$ Geodesic Spaces with Small Linear Diameter Growth have Finitely Generated Fundamental Groups
In this paper, we generalize the finite generation result of
Sormani
to nonbranching $RCD(0,N)$
geodesic spaces (and in particular, Alexandrov spaces) with full
support measures. This is a special case of the Milnor's Conjecture
for complete noncompact $RCD(0,N)$ spaces. One of the key tools
we use is the AbreschGromoll type excess estimates for nonsmooth
spaces obtained by GigliMosconi.
Keywords:Milnor conjecture, non negative Ricci curvature, curvature dimension condition, finitely generated, fundamental group, infinitesimally Hilbertian Categories:53C23, 30L99 

9. CMB 2015 (vol 58 pp. 664)
 Vahidi, Alireza

Betti Numbers and Flat Dimensions of Local Cohomology Modules
Assume that $R$ is a commutative Noetherian ring with nonzero
identity, $\mathfrak{a}$ is an ideal of $R$ and $X$ is an $R$module.
In this paper, we first study the finiteness of Betti numbers
of local cohomology modules $\operatorname{H}_\mathfrak{a}^i(X)$. Then we give some
inequalities between the Betti numbers of $X$ and those of its
local cohomology modules. Finally, we present many upper bounds
for the flat dimension of $X$ in terms of the flat dimensions
of its local cohomology modules and an upper bound for the flat
dimension of $\operatorname{H}_\mathfrak{a}^i(X)$ in terms of the flat dimensions of
the modules $\operatorname{H}_\mathfrak{a}^j(X)$, $j\not= i$, and that of $X$.
Keywords:Betti numbers, flat dimensions, local cohomology modules Categories:13D45, 13D05 

10. CMB 2015 (vol 58 pp. 519)
 Kang, SuJeong

Refined Motivic Dimension
We define a refined motivic dimension for an algebraic variety
by modifying the definition of motivic dimension by Arapura.
We apply this to check and recheck the generalized Hodge conjecture
for certain varieties, such as uniruled, rationally connected
varieties and a rational surface fibration.
Keywords:motivic dimension, generalized Hodge conjecture Categories:14C30, 14C25 

11. CMB 2015 (vol 58 pp. 402)
 Tikuisis, Aaron Peter; Toms, Andrew

On the Structure of Cuntz Semigroups in (Possibly) Nonunital C*algebras
We examine the ranks of operators in semifinite $\mathrm{C}^*$algebras
as measured by their densely defined lower semicontinuous traces.
We first prove that a unital simple $\mathrm{C}^*$algebra whose
extreme tracial boundary is nonempty and finite contains positive
operators of every possible rank, independent of the property
of strict comparison. We then turn to nonunital simple algebras
and establish criteria that imply that the Cuntz semigroup is
recovered functorially from the Murrayvon Neumann semigroup
and the space of densely defined lower semicontinuous traces.
Finally, we prove that these criteria are satisfied by notnecessarilyunital
approximately subhomogeneous algebras of slow dimension growth.
Combined with results of the firstnamed author, this shows that
slow dimension growth coincides with $\mathcal Z$stability,
for approximately subhomogeneous algebras.
Keywords:nuclear C*algebras, Cuntz semigroup, dimension functions, stably projectionless C*algebras, approximately subhomogeneous C*algebras, slow dimension growth Categories:46L35, 46L05, 46L80, 47L40, 46L85 

12. CMB 2014 (vol 57 pp. 814)
 Hou, Ruchen

On Global Dimensions of Tree Type Finite Dimensional Algebras
A formula is provided to
explicitly describe global dimensions of all kinds of tree type
finite dimensional $k$algebras for $k$ an algebraic closed field.
In particular, it is pointed out that if the underlying tree type
quiver has $n$ vertices, then the maximum of possible global
dimensions is $n1$.
Keywords:global dimension, tree type finite dimensional $k$algebra, quiver Categories:16D40, 16E10, , 16G20 

13. CMB 2014 (vol 57 pp. 673)
 Ahmadi, S. Ruhallah; Gilligan, Bruce

Complexifying Lie Group Actions on Homogeneous Manifolds of Noncompact Dimension Two
If $X$ is a connected complex manifold with $d_X = 2$ that admits a (connected) Lie group $G$
acting transitively as a group of holomorphic transformations, then the action extends to an action of the
complexification $\widehat{G}$ of $G$ on $X$ except when
either the unit disk in the complex plane
or a strictly pseudoconcave homogeneous complex manifold is
the base or fiber of some homogeneous fibration of $X$.
Keywords:homogeneous complex manifold, noncompact dimension two, complexification Category:32M10 

14. CMB 2013 (vol 57 pp. 245)
 Brodskiy, N.; Dydak, J.; Lang, U.

AssouadNagata Dimension of Wreath Products of Groups
Consider the wreath product $H\wr G$, where $H\ne 1$ is finite and $G$ is finitely generated.
We show that the AssouadNagata dimension $\dim_{AN}(H\wr G)$ of $H\wr G$
depends on the growth of $G$ as follows:
\par If the growth of $G$ is not bounded by a linear function, then $\dim_{AN}(H\wr G)=\infty$,
otherwise $\dim_{AN}(H\wr G)=\dim_{AN}(G)\leq 1$.
Keywords:AssouadNagata dimension, asymptotic dimension, wreath product, growth of groups Categories:54F45, 55M10, 54C65 

15. CMB 2013 (vol 57 pp. 335)
 Karassev, A.; Todorov, V.; Valov, V.

Alexandroff Manifolds and Homogeneous Continua
ny homogeneous,
metric $ANR$continuum is a $V^n_G$continuum provided $\dim_GX=n\geq
1$ and $\check{H}^n(X;G)\neq 0$, where $G$ is a principal ideal
domain.
This implies that any homogeneous $n$dimensional metric $ANR$continuum is a $V^n$continuum in the sense of Alexandroff.
We also prove that any finitedimensional homogeneous metric continuum
$X$, satisfying $\check{H}^n(X;G)\neq 0$ for some group $G$ and $n\geq
1$, cannot be separated by
a compactum $K$ with $\check{H}^{n1}(K;G)=0$ and $\dim_G K\leq
n1$. This provides a partial answer to a question of
KallipolitiPapasoglu
whether any twodimensional homogeneous Peano continuum cannot be separated by arcs.
Keywords:Cantor manifold, cohomological dimension, cohomology groups, homogeneous compactum, separator, $V^n$continuum Categories:54F45, 54F15 

16. CMB 2013 (vol 56 pp. 795)
 MacDonald, Mark L.

Upper Bounds for the Essential Dimension of $E_7$
This paper gives a new upper bound for the essential dimension and the
essential 2dimension of the split simply connected group of type
$E_7$ over a field of characteristic not 2 or 3. In particular,
$\operatorname{ed}(E_7) \leq 29$, and $\operatorname{ed}(E_7;2) \leq 27$.
Keywords:$E_7$, essential dimension, stabilizer in general position Categories:20G15, 20G41 

17. CMB 2013 (vol 57 pp. 159)
 Oral, Kürşat Hakan; Özkirişci, Neslihan Ayşen; Tekir, Ünsal

Strongly $0$dimensional Modules
In a multiplication module, prime submodules have the property, if a prime
submodule contains a finite intersection of submodules then one of the
submodules is contained in the prime submodule. In this paper, we generalize
this property to infinite intersection of submodules and call such prime
submodules strongly prime submodule. A multiplication module in which every
prime submodule is strongly prime will be called strongly 0dimensional
module. It is also an extension of strongly 0dimensional rings. After
this we investigate properties of strongly 0dimensional modules and give
relations of von Neumann regular modules, Qmodules and strongly
0dimensional modules.
Keywords:strongly 0dimensional rings, Qmodule, Von Neumann regular module Categories:13C99, 16D10 

18. CMB 2013 (vol 56 pp. 745)
 Fu, Xiaoye; Gabardo, JeanPierre

Dimension Functions of SelfAffine Scaling Sets
In this paper, the dimension function of a selfaffine generalized scaling set associated with an $n\times n$ integral expansive dilation $A$ is studied. More specifically, we consider the dimension function of an $A$dilation generalized scaling set $K$ assuming that $K$ is a selfaffine tile satisfying $BK = (K+d_1) \cup (K+d_2)$, where $B=A^t$, $A$ is an $n\times n$ integral expansive matrix with $\lvert \det A\rvert=2$, and $d_1,d_2\in\mathbb{R}^n$. We show that the dimension function of $K$ must be constant if either $n=1$ or $2$ or one of the digits is $0$, and that it is bounded by $2\lvert K\rvert$ for any $n$.
Keywords:scaling set, selfaffine tile, orthonormal multiwavelet, dimension function Category:42C40 

19. CMB 2012 (vol 56 pp. 737)
 Elliott, George A.; Niu, Zhuang

On the Radius of Comparison of a Commutative C*algebra
Let $X$ be a compact metric space. A lower bound for the radius of
comparison of the C*algebra $\operatorname{C}(X)$ is given in terms of
$\operatorname{dim}_{\mathbb{Q}} X$, where $\operatorname{dim}_{\mathbb{Q}} X $ is
the cohomological dimension with rational coefficients. If
$\operatorname{dim}_{\mathbb{Q}} X =\operatorname{dim} X=d$, then the
radius of comparison of the C*algebra $\operatorname{C}(X)$ is $\max\{0, (d1)/21\}$ if $d$ is odd, and must be either $d/21$ or $d/22$ if $d$ is even (the possibility of $d/21$ does occur, but we do not know if the possibility of $d/22$ also can occur).
Keywords:Cuntz semigroup, comparison radius, cohomology dimension, covering dimension 

20. CMB 2012 (vol 56 pp. 683)
 Nikseresht, A.; Azizi, A.

Envelope Dimension of Modules and the Simplified Radical Formula
We introduce and investigate the notion of envelope dimension of
commutative rings and modules over them. In particular, we show that
the envelope dimension of a ring, $R$, is equal to that of the
$R$module $R^{(\mathbb{N})}$. Also we prove that the Krull dimension of a
ring is no more than its envelope dimension and characterize
Noetherian rings for which these two dimensions are equal. Moreover we
generalize and study the concept of simplified radical formula for
modules, which
we defined in an earlier paper.
Keywords:envelope dimension, simplified radical formula, prime submodule Categories:13A99, 13C99, 13C13, 13E05 

21. CMB 2012 (vol 56 pp. 551)
 Handelman, David

Real Dimension Groups
Dimension groups (not countable) that are also real ordered vector
spaces can be obtained as direct limits (over directed sets) of
simplicial real vector spaces (finite dimensional vector spaces with
the coordinatewise ordering), but the directed set is not as
interesting as one would like, i.e., it is not true that a
countabledimensional real vector space that has interpolation can be
represented as such a direct limit over the a countable directed
set. It turns out this is the case when the group is additionally
simple, and it is shown that the latter have an ordered tensor product
decomposition. In the Appendix, we provide a huge class of polynomial
rings that, with a pointwise ordering, are shown to satisfy
interpolation, extending a result outlined by Fuchs.
Keywords:dimension group, simplicial vector space, direct limit, Riesz interpolation Categories:46A40, 06F20, 13J25, 19K14 

22. CMB 2012 (vol 56 pp. 491)
 Bahmanpour, Kamal

A Note on Homological Dimensions of Artinian Local Cohomology Modules
Let $(R,{\frak m})$ be a nonzero commutative Noetherian local ring
(with identity), $M$ be a nonzero finitely generated $R$module. In
this paper for any ${\frak p}\in {\rm Spec}(R)$ we show that
$
\operatorname{{\rm injdim_{_{R_{\frak p}}}}}
H^{i\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ and
${\rm fd}_{R_{\p}} H^{i\dim(R/{\frak p})}_{{\frak p}R_{\frak
p}}(M_{\frak p})$ are bounded from above by $
\operatorname{{\rm injdim_{_{R}}}}
H^i_{\frak
m}(M)$ and
$ {\rm fd}_R H^i_{\frak m}(M)$ respectively, for all integers $i\geq \dim(R/{\frak p})$.
Keywords:cofinite modules, flat dimension, injective dimension, Krull dimension, local cohomology Category:13D45 

23. CMB 2012 (vol 56 pp. 630)
 Sundar, S.

Inverse Semigroups and Sheu's Groupoid for the Odd Dimensional Quantum Spheres
In this paper, we give a different proof of the fact that the odd dimensional
quantum spheres are groupoid $C^{*}$algebras. We show that the $C^{*}$algebra
$C(S_{q}^{2\ell+1})$ is generated by an inverse semigroup $T$ of partial
isometries. We show that the groupoid $\mathcal{G}_{tight}$ associated with the
inverse semigroup $T$ by Exel is exactly the same as the groupoid
considered by Sheu.
Keywords:inverse semigroups, groupoids, odd dimensional quantum spheres Categories:46L99, 20M18 

24. CMB 2011 (vol 56 pp. 354)
 Hare, Kathryn E.; Mendivil, Franklin; Zuberman, Leandro

The Sizes of Rearrangements of Cantor Sets
A linear Cantor set $C$ with zero Lebesgue measure is associated with
the countable collection of the bounded complementary open intervals. A
rearrangment of $C$ has the same lengths of its complementary
intervals, but with different locations. We study the Hausdorff and packing
$h$measures and dimensional properties of the set of all rearrangments of
some given $C$ for general dimension functions $h$. For each set of
complementary lengths, we construct a Cantor set rearrangement which has the
maximal Hausdorff and the minimal packing $h$premeasure, up to a constant.
We also show that if the packing measure of this Cantor set is positive,
then there is a rearrangement which has infinite packing measure.
Keywords:Hausdorff dimension, packing dimension, dimension functions, Cantor sets, cutout set Categories:28A78, 28A80 

25. CMB 2011 (vol 56 pp. 292)
 Dai, MeiFeng

Quasisymmetrically Minimal Moran Sets
M. Hu and S. Wen considered quasisymmetrically minimal uniform Cantor
sets of Hausdorff dimension $1$, where at the $k$th set one removes
from each interval $I$ a certain number $n_{k}$ of open subintervals
of length $c_{k}I$, leaving $(n_{k}+1)$ closed subintervals of
equal length. Quasisymmetrically Moran sets of Hausdorff dimension $1$
considered in the paper are more general than uniform Cantor sets in
that neither the open subintervals nor the closed subintervals are
required to be of equal length.
Keywords:quasisymmetric, Moran set, Hausdorff dimension Categories:28A80, 54C30 
