CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword diagonal

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB Online first

Bownik, Marcin; Jasper, John
Constructive Proof of Carpenter's Theorem
We give a constructive proof of Carpenter's Theorem due to Kadison. Unlike the original proof our approach also yields the real case of this theorem.

Keywords:diagonals of projections, the Schur-Horn theorem, the Pythagorean theorem, the Carpenter theorem, spectral theory
Categories:42C15, 47B15, 46C05

2. CMB 2010 (vol 54 pp. 193)

Bennett, Harold; Lutzer, David
Measurements and $G_\delta$-Subsets of Domains
In this paper we study domains, Scott domains, and the existence of measurements. We use a space created by D.~K. Burke to show that there is a Scott domain $P$ for which $\max(P)$ is a $G_\delta$-subset of $P$ and yet no measurement $\mu$ on $P$ has $\ker(\mu) = \max(P)$. We also correct a mistake in the literature asserting that $[0, \omega_1)$ is a space of this type. We show that if $P$ is a Scott domain and $X \subseteq \max(P)$ is a $G_\delta$-subset of $P$, then $X$ has a $G_\delta$-diagonal and is weakly developable. We show that if $X \subseteq \max(P)$ is a $G_\delta$-subset of $P$, where $P$ is a domain but perhaps not a Scott domain, then $X$ is domain-representable, first-countable, and is the union of dense, completely metrizable subspaces. We also show that there is a domain $P$ such that $\max(P)$ is the usual space of countable ordinals and is a $G_\delta$-subset of $P$ in the Scott topology. Finally we show that the kernel of a measurement on a Scott domain can consistently be a normal, separable, non-metrizable Moore space.

Keywords:domain-representable, Scott-domain-representable, measurement, Burke's space, developable spaces, weakly developable spaces, $G_\delta$-diagonal, Čech-complete space, Moore space, $\omega_1$, weakly developable space, sharp base, AF-complete
Categories:54D35, 54E30, 54E52, 54E99, 06B35, 06F99

3. CMB 2004 (vol 47 pp. 615)

Randrianantoanina, Narcisse
$C^*$-Algebras and Factorization Through Diagonal Operators
Let $\cal A$ be a $C^*$-algebra and $E$ be a Banach space with the Radon-Nikodym property. We prove that if $j$ is an embedding of $E$ into an injective Banach space then for every absolutely summing operator $T:\mathcal{A}\longrightarrow E$, the composition $j \circ T$ factors through a diagonal operator from $l^{2}$ into $l^{1}$. In particular, $T$ factors through a Banach space with the Schur property. Similarly, we prove that for $2
Keywords:$C^*$-algebras, summing operators, diagonal operators,, Radon-Nikodym property
Categories:46L50, 47D15

4. CMB 2003 (vol 46 pp. 388)

Lin, Huaxin
Tracially Quasidiagonal Extensions
It is known that a unital simple $C^*$-algebra $A$ with tracial topological rank zero has real rank zero. We show in this note that, in general, there are unital $C^*$-algebras with tracial topological rank zero that have real rank other than zero. Let $0\to J\to E\to A\to 0$ be a short exact sequence of $C^*$-algebras. Suppose that $J$ and $A$ have tracial topological rank zero. It is known that $E$ has tracial topological rank zero as a $C^*$-algebra if and only if $E$ is tracially quasidiagonal as an extension. We present an example of a tracially quasidiagonal extension which is not quasidiagonal.

Keywords:tracially quasidiagonal extensions, tracial rank
Categories:46L05, 46L80

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/