Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword determinant

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Reichstein, Zinovy; Vistoli, Angelo
On the dimension of the locus of determinantal hypersurfaces
The characteristic polynomial $P_A(x_0, \dots, x_r)$ of an $r$-tuple $A := (A_1, \dots, A_r)$ of $n \times n$-matrices is defined as \[ P_A(x_0, \dots, x_r) := \det(x_0 I + x_1 A_1 + \dots + x_r A_r) \, . \] We show that if $r \geqslant 3$ and $A := (A_1, \dots, A_r)$ is an $r$-tuple of $n \times n$-matrices in general position, then up to conjugacy, there are only finitely many $r$-tuples $A' := (A_1', \dots, A_r')$ such that $p_A = p_{A'}$. Equivalently, the locus of determinantal hypersurfaces of degree $n$ in $\mathbf{P}^r$ is irreducible of dimension $(r-1)n^2 + 1$.

Keywords:determinantal hypersurface, matrix invariant, $q$-binomial coefficient
Categories:14M12, 15A22, 05A10

2. CMB 2016 (vol 59 pp. 585)

Lin, Minghua
A Determinantal Inequality Involving Partial Traces
Let $\mathbf{A}$ be a density matrix in $\mathbb{M}_m\otimes \mathbb{M}_n$. Audenaert [J. Math. Phys. 48 (2007) 083507] proved an inequality for Schatten $p$-norms: \[ 1+\|\mathbf{A}\|_p\ge \|\tr_1 \mathbf{A}\|_p+\|\tr_2 \mathbf{A}\|_p, \] where $\tr_1, \tr_2$ stand for the first and second partial trace, respectively. As an analogue of his result, we prove a determinantal inequality \[ 1+\det \mathbf{A}\ge \det(\tr_1 \mathbf{A})^m+\det(\tr_2 \mathbf{A})^n. \]

Keywords:determinantal inequality, partial trace, block matrix
Categories:47B65, 15A45, 15A60

3. CMB 2016 (vol 59 pp. 311)

Ilten, Nathan; Teitler, Zach
Product Ranks of the $3\times 3$ Determinant and Permanent
We show that the product rank of the $3 \times 3$ determinant $\det_3$ is $5$, and the product rank of the $3 \times 3$ permanent $\operatorname{perm}_3$ is $4$. As a corollary, we obtain that the tensor rank of $\det_3$ is $5$ and the tensor rank of $\operatorname{perm}_3$ is $4$. We show moreover that the border product rank of $\operatorname{perm}_n$ is larger than $n$ for any $n\geq 3$.

Keywords:product rank, tensor rank, determinant, permanent, Fano schemes
Categories:15A21, 15A69, 14M12, 14N15

© Canadian Mathematical Society, 2016 :