CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword covering

  Expand all        Collapse all Results 1 - 8 of 8

1. CMB 2013 (vol 57 pp. 526)

Heil, Wolfgang; Wang, Dongxu
On $3$-manifolds with Torus or Klein Bottle Category Two
A subset $W$ of a closed manifold $M$ is $K$-contractible, where $K$ is a torus or Kleinbottle, if the inclusion $W\rightarrow M$ factors homotopically through a map to $K$. The image of $\pi_1 (W)$ (for any base point) is a subgroup of $\pi_1 (M)$ that is isomorphic to a subgroup of a quotient group of $\pi_1 (K)$. Subsets of $M$ with this latter property are called $\mathcal{G}_K$-contractible. We obtain a list of the closed $3$-manifolds that can be covered by two open $\mathcal{G}_K$-contractible subsets. This is applied to obtain a list of the possible closed prime $3$-manifolds that can be covered by two open $K$-contractible subsets.

Keywords:Lusternik--Schnirelmann category, coverings of $3$-manifolds by open $K$-contractible sets
Categories:57N10, 55M30, 57M27, 57N16

2. CMB 2012 (vol 56 pp. 737)

Elliott, George A.; Niu, Zhuang
On the Radius of Comparison of a Commutative C*-algebra
Let $X$ be a compact metric space. A lower bound for the radius of comparison of the C*-algebra $\operatorname{C}(X)$ is given in terms of $\operatorname{dim}_{\mathbb{Q}} X$, where $\operatorname{dim}_{\mathbb{Q}} X $ is the cohomological dimension with rational coefficients. If $\operatorname{dim}_{\mathbb{Q}} X =\operatorname{dim} X=d$, then the radius of comparison of the C*-algebra $\operatorname{C}(X)$ is $\max\{0, (d-1)/2-1\}$ if $d$ is odd, and must be either $d/2-1$ or $d/2-2$ if $d$ is even (the possibility of $d/2-1$ does occur, but we do not know if the possibility of $d/2-2$ also can occur).

Keywords:Cuntz semigroup, comparison radius, cohomology dimension, covering dimension

3. CMB 2012 (vol 57 pp. 42)

Fonf, Vladimir P.; Zanco, Clemente
Covering the Unit Sphere of Certain Banach Spaces by Sequences of Slices and Balls
e prove that, given any covering of any infinite-dimensional Hilbert space $H$ by countably many closed balls, some point exists in $H$ which belongs to infinitely many balls. We do that by characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits a point-finite covering by the union of countably many slices of the unit ball.

Keywords:point finite coverings, slices, polyhedral spaces, Hilbert spaces
Categories:46B20, 46C05, 52C17

4. CMB 2009 (vol 52 pp. 424)

Martini, Horst; Spirova, Margarita
Covering Discs in Minkowski Planes
We investigate the following version of the circle covering problem in strictly convex (normed or) Minkowski planes: to cover a circle of largest possible diameter by $k$ unit circles. In particular, we study the cases $k=3$, $k=4$, and $k=7$. For $k=3$ and $k=4$, the diameters under consideration are described in terms of side-lengths and circumradii of certain inscribed regular triangles or quadrangles. This yields also simple explanations of geometric meanings that the corresponding homothety ratios have. It turns out that basic notions from Minkowski geometry play an essential role in our proofs, namely Minkowskian bisectors, $d$-segments, and the monotonicity lemma.

Keywords:affine regular polygon, bisector, circle covering problem, circumradius, $d$-segment, Minkowski plane, (strictly convex) normed plane
Categories:46B20, 52A21, 52C15

5. CMB 2005 (vol 48 pp. 180)

Cynk, Sławomir; Meyer, Christian
Geometry and Arithmetic of Certain Double Octic Calabi--Yau Manifolds
We study Calabi--Yau manifolds constructed as double coverings of $\mathbb{P}^3$ branched along an octic surface. We give a list of 87 examples corresponding to arrangements of eight planes defined over $\mathbb{Q}$. The Hodge numbers are computed for all examples. There are 10 rigid Calabi--Yau manifolds and 14 families with $h^{1,2}=1$. The modularity conjecture is verified for all the rigid examples.

Keywords:Calabi--Yau, double coverings, modular forms
Categories:14G10, 14J32

6. CMB 2002 (vol 45 pp. 634)

Lagarias, Jeffrey C.; Pleasants, Peter A. B.
Local Complexity of Delone Sets and Crystallinity
This paper characterizes when a Delone set $X$ in $\mathbb{R}^n$ is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the heterogeneity of their distribution. For a Delone set $X$, let $N_X (T)$ count the number of translation-inequivalent patches of radius $T$ in $X$ and let $M_X(T)$ be the minimum radius such that every closed ball of radius $M_X(T)$ contains the center of a patch of every one of these kinds. We show that for each of these functions there is a ``gap in the spectrum'' of possible growth rates between being bounded and having linear growth, and that having sufficiently slow linear growth is equivalent to $X$ being an ideal crystal. Explicitly, for $N_X(T)$, if $R$ is the covering radius of $X$ then either $N_X(T)$ is bounded or $N_X (T) \ge T/2R$ for all $T>0$. The constant $1/2R$ in this bound is best possible in all dimensions. For $M_X(T)$, either $M_X(T)$ is bounded or $M_X(T)\ge T/3$ for all $T>0$. Examples show that the constant $1/3$ in this bound cannot be replaced by any number exceeding $1/2$. We also show that every aperiodic Delone set $X$ has $M_X(T)\ge c(n) T$ for all $T>0$, for a certain constant $c(n)$ which depends on the dimension $n$ of $X$ and is $>1/3$ when $n>1$.

Keywords:aperiodic set, Delone set, packing-covering constant, sphere packing
Categories:52C23, 52C17

7. CMB 2000 (vol 43 pp. 268)

Bogley, W. A.; Gilbert, N. D.; Howie, James
Cockcroft Properties of Thompson's Group
In a study of the word problem for groups, R.~J.~Thompson considered a certain group $F$ of self-homeomorphisms of the Cantor set and showed, among other things, that $F$ is finitely presented. Using results of K.~S.~Brown and R.~Geoghegan, M.~N.~Dyer showed that $F$ is the fundamental group of a finite two-complex $Z^2$ having Euler characteristic one and which is {\em Cockcroft}, in the sense that each map of the two-sphere into $Z^2$ is homologically trivial. We show that no proper covering complex of $Z^2$ is Cockcroft. A general result on Cockcroft properties implies that no proper regular covering complex of any finite two-complex with fundamental group $F$ is Cockcroft.

Keywords:two-complex, covering space, Cockcroft two-complex, Thompson's group
Categories:57M20, 20F38, 57M10, 20F34

8. CMB 1997 (vol 40 pp. 309)

Hillman, J. A.; Sakuma, M.
On the homology of finite abelian coverings of links
Let $A$ be a finite abelian group and $M$ be a branched cover of an homology $3$-sphere, branched over a link $L$, with covering group $A$. We show that $H_1(M;Z[1/|A|])$ is determined as a $Z[1/|A|][A]$-module by the Alexander ideals of $L$ and certain ideal class invariants.

Keywords:Alexander ideal, branched covering, Dedekind domain,, knot, link.
Category:57M25

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/