Expand all Collapse all | Results 1 - 5 of 5 |
1. CMB 2012 (vol 57 pp. 61)
2-dimensional Convexity Numbers and $P_4$-free Graphs For $S\subseteq\mathbb R^n$ a set
$C\subseteq S$ is an $m$-clique if the convex hull of no $m$-element subset of
$C$ is contained in $S$.
We show that there is essentially just one way to construct
a closed set $S\subseteq\mathbb R^2$ without an uncountable
$3$-clique that is not the union of countably many convex sets.
In particular, all such sets have the same convexity number;
that is, they
require the same number of convex subsets to cover them.
The main result follows from an analysis of the convex structure of closed
sets in $\mathbb R^2$ without uncountable 3-cliques in terms of
clopen, $P_4$-free graphs on Polish spaces.
Keywords:convex cover, convexity number, continuous coloring, perfect graph, cograph Categories:52A10, 03E17, 03E75 |
2. CMB 2011 (vol 54 pp. 217)
Recurrence Relations for Strongly $q$-Log-Convex Polynomials
We consider a class of
strongly $q$-log-convex polynomials based on a triangular recurrence
relation with linear coefficients, and we show that the Bell
polynomials, the Bessel polynomials, the Ramanujan polynomials and
the Dowling polynomials are strongly $q$-log-convex. We also prove
that the Bessel transformation preserves log-convexity.
Keywords:log-concavity, $q$-log-convexity, strong $q$-log-convexity, Bell polynomials, Bessel polynomials, Ramanujan polynomials, Dowling polynomials Categories:05A20, 05E99 |
3. CMB 2009 (vol 52 pp. 39)
A Representation Theorem for Archimedean Quadratic Modules on $*$-Rings We present a new approach to noncommutative real algebraic geometry
based on the representation theory of $C^\ast$-algebras.
An important result in commutative real algebraic geometry is
Jacobi's representation theorem for archimedean quadratic modules
on commutative rings.
We show that this theorem is a consequence of the
Gelfand--Naimark representation theorem for commutative $C^\ast$-algebras.
A noncommutative version of Gelfand--Naimark theory was studied by
I. Fujimoto. We use his results to generalize
Jacobi's theorem to associative rings with involution.
Keywords:Ordered rings with involution, $C^\ast$-algebras and their representations, noncommutative convexity theory, real algebraic geometry Categories:16W80, 46L05, 46L89, 14P99 |
4. CMB 2003 (vol 46 pp. 242)
Euclidean Sections of Direct Sums of Normed Spaces We study the dimension of ``random'' Euclidean sections of direct sums of
normed spaces. We compare the obtained results with results from \cite{LMS},
to show that for the direct sums the standard randomness with respect to the
Haar measure on Grassmanian coincides with a much ``weaker'' randomness of
``diagonal'' subspaces (Corollary~\ref{sle} and explanation after). We also
add some relative information on ``phase transition''.
Keywords:Dvoretzky theorem, ``random'' Euclidean section, phase transition in asymptotic convexity Categories:46B07, 46B09, 46B20, 52A21 |
5. CMB 2000 (vol 43 pp. 448)
Nonconvexity of the Generalized Numerical Range Associated with the Principal Character Suppose $m$ and $n$ are integers such that $1 \le m \le n$. For a
subgroup $H$ of the symmetric group $S_m$ of degree $m$, consider
the {\it generalized matrix function} on $m\times m$ matrices $B =
(b_{ij})$ defined by $d^H(B) = \sum_{\sigma \in H} \prod_{j=1}^m
b_{j\sigma(j)}$ and the {\it generalized numerical range} of an
$n\times n$ complex matrix $A$ associated with $d^H$ defined by
$$
\wmp(A) = \{d^H (X^*AX): X \text{ is } n \times m \text{ such that }
X^*X = I_m\}.
$$
It is known that $\wmp(A)$ is convex if $m = 1$ or if $m = n = 2$.
We show that there exist normal matrices $A$ for which $\wmp(A)$ is
not convex if $3 \le m \le n$. Moreover, for $m = 2 < n$, we prove
that a normal matrix $A $ with eigenvalues lying on a straight line
has convex $\wmp(A)$ if and only if $\nu A$ is Hermitian for some
nonzero $\nu \in \IC$. These results extend those of Hu, Hurley
and Tam, who studied the special case when $2 \le m \le 3 \le n$
and $H = S_m$.
Keywords:convexity, generalized numerical range, matrices Category:15A60 |