Expand all Collapse all | Results 1 - 2 of 2 |
1. CMB 2009 (vol 52 pp. 403)
Shaken Rogers's Theorem for Homothetic Sections We shall prove the following shaken Rogers's theorem for
homothetic sections: Let $K$ and $L$ be strictly convex bodies and
suppose that for every plane $H$ through the origin we can choose
continuously sections of $K $ and $L$, parallel to $H$, which are
directly homothetic. Then $K$ and $L$ are directly homothetic.
Keywords:convex bodies, homothetic bodies, sections and projections, Rogers's Theorem Category:52A15 |
2. CMB 2003 (vol 46 pp. 373)
Potential Theory of the Farthest-Point Distance Function We study the farthest-point distance function, which measures the
distance from $z \in \mathbb{C}$ to the farthest point or points of
a given compact set $E$ in the plane.
The logarithm of this distance is subharmonic as a function of $z$,
and equals the logarithmic potential of a unique probability measure
with unbounded support. This measure $\sigma_E$ has many interesting
properties that reflect the topology and geometry of the compact set
$E$. We prove $\sigma_E(E) \leq \frac12$ for polygons inscribed in a
circle, with equality if and only if $E$ is a regular $n$-gon for some
odd $n$. Also we show $\sigma_E(E) = \frac12$ for smooth convex sets of
constant width. We conjecture $\sigma_E(E) \leq \frac12$ for all~$E$.
Keywords:distance function, farthest points, subharmonic function, representing measure, convex bodies of constant width Categories:31A05, 52A10, 52A40 |