1. CMB 2015 (vol 58 pp. 704)
 Benamar, H.; Chandoul, A.; Mkaouar, M.

On the Continued Fraction Expansion of Fixed Period in Finite Fields
The Chowla conjecture
states that,
if $t$ is any given
positive integer, there are infinitely many prime positive
integers $N$ such that $\operatorname{Per} (\sqrt{N})=t$, where
$\operatorname{Per} (\sqrt{N})$
is the period length of the continued fraction expansion for
$\sqrt{N}$.
C. Friesen proved
that, for any $k\in \mathbb{N}$, there are infinitely many
squarefree integers $N$, where the continued fraction expansion
of $\sqrt{N}$ has a fixed period. In this paper, we describe all
polynomials $Q\in \mathbb{F}_q[X] $ for which the continued fraction
expansion of $\sqrt {Q}$ has a fixed period, also we give a
lower
bound of the number of monic, nonsquares polynomials $Q$ such
that $\deg Q= 2d$ and $ Per \sqrt {Q}=t$.
Keywords:continued fractions, polynomials, formal power series Categories:11A55, 13J05 

2. CMB 2011 (vol 55 pp. 774)
 Mollin, R. A.; Srinivasan, A.

Pell Equations: NonPrincipal Lagrange Criteria and Central Norms
We provide a criterion for the central norm to be
any value in the simple continued fraction expansion of $\sqrt{D}$
for any nonsquare integer $D>1$. We also provide a simple criterion
for the solvability of the Pell equation $x^2Dy^2=1$ in terms of
congruence conditions modulo $D$.
Keywords:Pell's equation, continued fractions, central norms Categories:11D09, 11A55, 11R11, 11R29 

3. CMB 2005 (vol 48 pp. 121)
4. CMB 2002 (vol 45 pp. 428)
 Mollin, R. A.

Criteria for Simultaneous Solutions of $X^2  DY^2 = c$ and $x^2  Dy^2 = c$
The purpose of this article is to provide criteria for the
simultaneous solvability of the Diophantine equations $X^2  DY^2 =
c$ and $x^2  Dy^2 = c$ when $c \in \mathbb{Z}$, and $D \in
\mathbb{N}$ is not a perfect square. This continues work in
\cite{me}\cite{alfnme}.
Keywords:continued fractions, Diophantine equations, fundamental units, simultaneous solutions Categories:11A55, 11R11, 11D09 

5. CMB 2002 (vol 45 pp. 97)
 Haas, Andrew

Invariant Measures and Natural Extensions
We study ergodic properties of a family of interval maps that are
given as the fractional parts of certain real M\"obius
transformations. Included are the maps that are exactly
$n$to$1$, the classical Gauss map and the Renyi or backward
continued fraction map. A new approach is presented for deriving
explicit realizations of natural automorphic extensions and their
invariant measures.
Keywords:Continued fractions, interval maps, invariant measures Categories:11J70, 58F11, 58F03 
