1. CMB Online first
 Benamar, H.; Chandoul, A.; Mkaouar, M.

On the continued fraction expansion of fixed period in finite fields
The Chowla conjecture
states that,
if $t$ is any given
positive integer, there are infinitely many prime positive
integers $N$ such that $\operatorname{Per} (\sqrt{N})=t$, where
$\operatorname{Per} (\sqrt{N})$
is the period length of the continued fraction expansion for
$\sqrt{N}$.
C. Friesen proved
that, for any $k\in \mathbb{N}$, there are infinitely many
squarefree integers $N$, where the continued fraction expansion
of $\sqrt{N}$ has a fixed period. In this paper, we describe all
polynomials $Q\in \mathbb{F}_q[X] $ for which the continued fraction
expansion of $\sqrt {Q}$ has a fixed period, also we give a
lower
bound of the number of monic, nonsquares polynomials $Q$ such
that $\deg Q= 2d$ and $ Per \sqrt {Q}=t$.
Keywords:continued fractions, polynomials, formal power series Categories:11A55, 13J05 

2. CMB 2013 (vol 56 pp. 673)
 Ayadi, K.; Hbaib, M.; Mahjoub, F.

Diophantine Approximation for Certain Algebraic Formal Power Series in Positive Characteristic
In this paper, we study rational approximations for certain algebraic power series over a finite field.
We obtain results for irrational elements of strictly positive degree
satisfying an equation of the type
\begin{equation}
\alpha=\displaystyle\frac{A\alpha^{q}+B}{C\alpha^{q}}
\end{equation}
where $(A, B, C)\in
(\mathbb{F}_{q}[X])^{2}\times\mathbb{F}_{q}^{\star}[X]$.
In particular,
we will give, under some conditions on the polynomials $A$, $B$
and $C$, well approximated elements satisfying this equation.
Keywords:diophantine approximation, formal power series, continued fraction Categories:11J61, 11J70 

3. CMB 2011 (vol 56 pp. 258)
 Chandoul, A.; Jellali, M.; Mkaouar, M.

The Smallest Pisot Element in the Field of Formal Power Series Over a Finite Field
Dufresnoy and Pisot characterized the smallest
Pisot number of degree $n \geq 3$ by giving explicitly its minimal
polynomial. In this paper, we translate Dufresnoy and Pisot's
result to the Laurent series case.
The
aim of this paper is to prove that the minimal polynomial
of the smallest Pisot element (SPE) of degree $n$ in the field of
formal power series over a finite field
is given by $P(Y)=Y^{n}\alpha XY^{n1}\alpha^n,$ where $\alpha$
is the least element of the finite field $\mathbb{F}_{q}\backslash\{0\}$
(as a finite total ordered set). We prove that the sequence of
SPEs of degree $n$ is decreasing and converges to $\alpha X.$
Finally, we show how to obtain explicit continued fraction
expansion of the smallest Pisot element over a finite field.
Keywords:Pisot element, continued fraction, Laurent series, finite fields Categories:11A55, 11D45, 11D72, 11J61, 11J66 

4. CMB 2011 (vol 55 pp. 774)
 Mollin, R. A.; Srinivasan, A.

Pell Equations: NonPrincipal Lagrange Criteria and Central Norms
We provide a criterion for the central norm to be
any value in the simple continued fraction expansion of $\sqrt{D}$
for any nonsquare integer $D>1$. We also provide a simple criterion
for the solvability of the Pell equation $x^2Dy^2=1$ in terms of
congruence conditions modulo $D$.
Keywords:Pell's equation, continued fractions, central norms Categories:11D09, 11A55, 11R11, 11R29 

5. CMB 2005 (vol 48 pp. 121)
6. CMB 2002 (vol 45 pp. 428)
 Mollin, R. A.

Criteria for Simultaneous Solutions of $X^2  DY^2 = c$ and $x^2  Dy^2 = c$
The purpose of this article is to provide criteria for the
simultaneous solvability of the Diophantine equations $X^2  DY^2 =
c$ and $x^2  Dy^2 = c$ when $c \in \mathbb{Z}$, and $D \in
\mathbb{N}$ is not a perfect square. This continues work in
\cite{me}\cite{alfnme}.
Keywords:continued fractions, Diophantine equations, fundamental units, simultaneous solutions Categories:11A55, 11R11, 11D09 

7. CMB 2002 (vol 45 pp. 97)
 Haas, Andrew

Invariant Measures and Natural Extensions
We study ergodic properties of a family of interval maps that are
given as the fractional parts of certain real M\"obius
transformations. Included are the maps that are exactly
$n$to$1$, the classical Gauss map and the Renyi or backward
continued fraction map. A new approach is presented for deriving
explicit realizations of natural automorphic extensions and their
invariant measures.
Keywords:Continued fractions, interval maps, invariant measures Categories:11J70, 58F11, 58F03 
