CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword complex trigonometric series

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2009 (vol 52 pp. 627)

Yu, Dan Sheng; Zhou, Ping; Zhou, Song Ping
On $L^{1}$-Convergence of Fourier Series under the MVBV Condition
Let $f\in L_{2\pi }$ be a real-valued even function with its Fourier series $% \frac{a_{0}}{2}+\sum_{n=1}^{\infty }a_{n}\cos nx,$ and let $S_{n}(f,x) ,\;n\geq 1,$ be the $n$-th partial sum of the Fourier series. It is well known that if the nonnegative sequence $\{a_{n}\}$ is decreasing and $\lim_{n\rightarrow \infty }a_{n}=0$, then% \begin{equation*} \lim_{n\rightarrow \infty }\Vert f-S_{n}(f)\Vert _{L}=0 \text{ if and only if }\lim_{n\rightarrow \infty }a_{n}\log n=0. \end{equation*}% We weaken the monotone condition in this classical result to the so-called mean value bounded variation (MVBV) condition. The generalization of the above classical result in real-valued function space is presented as a special case of the main result in this paper, which gives the $L^{1}$% -convergence of a function $f\in L_{2\pi }$ in complex space. We also give results on $L^{1}$-approximation of a function $f\in L_{2\pi }$ under the MVBV condition.

Keywords:complex trigonometric series, $L^{1}$ convergence, monotonicity, mean value bounded variation
Categories:42A25, 41A50

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/