Expand all Collapse all | Results 1 - 1 of 1 |
1. CMB 2009 (vol 52 pp. 627)
On $L^{1}$-Convergence of Fourier Series under the MVBV Condition Let $f\in L_{2\pi }$ be a real-valued even function with its Fourier series $%
\frac{a_{0}}{2}+\sum_{n=1}^{\infty }a_{n}\cos nx,$ and let
$S_{n}(f,x) ,\;n\geq 1,$ be the $n$-th partial sum of the Fourier series. It
is well known that if the nonnegative sequence $\{a_{n}\}$ is decreasing and
$\lim_{n\rightarrow \infty }a_{n}=0$, then%
\begin{equation*}
\lim_{n\rightarrow \infty }\Vert f-S_{n}(f)\Vert _{L}=0
\text{ if
and only if }\lim_{n\rightarrow \infty }a_{n}\log n=0.
\end{equation*}%
We weaken the monotone condition in this classical result to the so-called
mean value bounded variation (MVBV) condition. The generalization of the
above classical result in real-valued function space is presented as a
special case of the main result in this paper, which gives the $L^{1}$%
-convergence of a function $f\in L_{2\pi }$ in complex space. We also give
results on $L^{1}$-approximation of a function $f\in L_{2\pi }$ under the
MVBV condition.
Keywords:complex trigonometric series, $L^{1}$ convergence, monotonicity, mean value bounded variation Categories:42A25, 41A50 |