Expand all Collapse all | Results 1 - 1 of 1 |
1. CMB 2009 (vol 53 pp. 11)
Approximation and Interpolation by Entire Functions of Several Variables Let $f\colon \mathbb R^n\to \mathbb R$ be $C^\infty$ and let $h\colon
\mathbb R^n\to\mathbb R$ be positive
and continuous. For any unbounded nondecreasing sequence $\{c_k\}$
of nonnegative real numbers and for any sequence without
accumulation points $\{x_m\}$ in $\mathbb R^n$, there exists an entire
function $g\colon\mathbb C^n\to\mathbb C$ taking real values on $\mathbb R^n$ such that
\begin{align*}
&|g^{(\alpha)}(x)-f^{(\alpha)}(x)|\lt h(x), \quad |x|\ge c_k, |\alpha|\le k,
k=0,1,2,\dots,
\\
&g^{(\alpha)}(x_m)=f^{(\alpha)}(x_m), \quad |x_m|\ge c_k, |\alpha|\le k,
m,k=0,1,2,\dots.
\end{align*}
This is a version for functions of several variables of the
case $n=1$ due to L. Hoischen.
Keywords:entire function, complex approximation, interpolation, several complex variables Category:32A15 |