Expand all Collapse all | Results 1 - 6 of 6 |
1. CMB 2011 (vol 55 pp. 646)
Marcinkiewicz Commutators with Lipschitz Functions in Non-homogeneous Spaces Under the assumption that $\mu$ is a nondoubling
measure, we study certain commutators generated by the
Lipschitz function and the Marcinkiewicz integral whose kernel
satisfies a HÃ¶rmander-type condition. We establish the boundedness
of these commutators on the Lebesgue spaces, Lipschitz spaces, and
Hardy spaces. Our results are extensions of known theorems in the
doubling case.
Keywords:non doubling measure, Marcinkiewicz integral, commutator, ${\rm Lip}_{\beta}(\mu)$, $H^1(\mu)$ Categories:42B25, 47B47, 42B20, 47A30 |
2. CMB 2011 (vol 55 pp. 555)
Weighted $L^p$ Boundedness of Pseudodifferential Operators and Applications In this paper we prove weighted norm inequalities with weights in
the $A_p$ classes, for pseudodifferential operators with symbols in
the class ${S^{n(\rho -1)}_{\rho, \delta}}$ that fall outside the
scope of CalderÃ³n-Zygmund theory. This is accomplished by
controlling the sharp function of the pseudodifferential operator by
Hardy-Littlewood type maximal functions. Our weighted norm
inequalities also yield $L^{p}$ boundedness of commutators of
functions of bounded mean oscillation with a wide class of operators
in $\mathrm{OP}S^{m}_{\rho, \delta}$.
Keywords:weighted norm inequality, pseudodifferential operator, commutator estimates Categories:42B20, 42B25, 35S05, 47G30 |
3. CMB 2011 (vol 55 pp. 339)
From Matrix to Operator Inequalities We generalize LÃ¶wner's method for proving that matrix monotone
functions are operator monotone. The relation $x\leq y$ on bounded
operators is our model for a definition of $C^{*}$-relations
being residually finite dimensional.
Our main result is a meta-theorem about theorems involving relations
on bounded operators. If we can show there are residually finite dimensional
relations involved and verify a technical condition, then such a
theorem will follow from its restriction to matrices.
Applications are shown regarding norms of exponentials, the norms
of commutators, and "positive" noncommutative $*$-polynomials.
Keywords:$C*$-algebras, matrices, bounded operators, relations, operator norm, order, commutator, exponential, residually finite dimensional Categories:46L05, 47B99 |
4. CMB 2006 (vol 49 pp. 414)
Commutators Estimates on Triebel--Lizorkin Spaces In this paper, we consider the behavior of the commutators of convolution
operators on the Triebel--Lizorkin spaces $\dot{F}^{s, q} _p$.
Keywords:commutators, Triebel--Lizorkin spaces, paraproduct Categories:42B, 46F |
5. CMB 1999 (vol 42 pp. 463)
A Generalized Characterization of Commutators of Parabolic Singular Integrals Let $x=(x_1, \dots, x_n)\in\rz$ and $\dz_\lz x=(\lz^{\az_1}x_1,
\dots,\lz^{\az_n}x_n)$, where $\lz>0$ and $1\le \az_1\le\cdots
\le\az_n$. Denote $|\az|=\az_1+\cdots+\az_n$. We characterize those
functions $A(x)$ for which the parabolic Calder\'on commutator
$$
T_{A}f(x)\equiv \pv \int_{\mathbb{R}^n}
K(x-y)[A(x)-A(y)]f(y)\,dy
$$
is bounded on $L^2(\mathbb{R}^n)$, where $K(\dz_\lz x)=\lz^{-|\az|-1}K(x)$,
$K$ is smooth away from the origin and satisfies a certain cancellation
property.
Keywords:parabolic singular integral, commutator, parabolic $\BMO$ sobolev space, homogeneous space, T1-theorem, symbol Category:42B20 |
6. CMB 1999 (vol 42 pp. 198)
Commutators and Analytic Dependence of Fourier-Bessel Series on $(0,\infty)$ In this paper we study the boundedness of the commutators $[b,
S_n]$ where $b$ is a $\BMO$ function and $S_n$ denotes the $n$-th
partial sum of the Fourier-Bessel series on $(0,\infty)$.
Perturbing the measure by $\exp(2b)$ we obtain that certain
operators related to $S_n$ depend analytically on the functional
parameter $b$.
Keywords:Fourier-Bessel series, commutators, BMO, $A_p$ weights Category:42C10 |