1. CMB 2012 (vol 56 pp. 491)
 Bahmanpour, Kamal

A Note on Homological Dimensions of Artinian Local Cohomology Modules
Let $(R,{\frak m})$ be a nonzero commutative Noetherian local ring
(with identity), $M$ be a nonzero finitely generated $R$module. In
this paper for any ${\frak p}\in {\rm Spec}(R)$ we show that
$
\operatorname{{\rm injdim_{_{R_{\frak p}}}}}
H^{i\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ and
${\rm fd}_{R_{\p}} H^{i\dim(R/{\frak p})}_{{\frak p}R_{\frak
p}}(M_{\frak p})$ are bounded from above by $
\operatorname{{\rm injdim_{_{R}}}}
H^i_{\frak
m}(M)$ and
$ {\rm fd}_R H^i_{\frak m}(M)$ respectively, for all integers $i\geq \dim(R/{\frak p})$.
Keywords:cofinite modules, flat dimension, injective dimension, Krull dimension, local cohomology Category:13D45 

2. CMB 2011 (vol 55 pp. 81)