1. CMB 2011 (vol 55 pp. 73)
 Dean, Andrew J.

Classification of Inductive Limits of Outer Actions of ${\mathbb R}$ on Approximate Circle Algebras
In this paper we present a classification,
up to equivariant isomorphism, of $C^*$dynamical systems $(A,{\mathbb R},\alpha )$
arising as inductive limits of directed systems
$\{ (A_n,{\mathbb R},\alpha_n),\varphi_{nm}\}$, where each $A_n$
is a finite direct sum of matrix algebras over the continuous
functions on the unit circle, and the $\alpha_n$s are outer actions
generated by rotation of the spectrum.
Keywords:classification, $C^*$dynamical system Categories:46L57, 46L35 

2. CMB 2006 (vol 49 pp. 213)
3. CMB 1999 (vol 42 pp. 274)
 Dădărlat, Marius; Eilers, Søren

The Bockstein Map is Necessary
We construct two nonisomorphic nuclear, stably finite,
real rank zero $C^\ast$algebras $E$ and $E'$ for which
there is an isomorphism of ordered groups
$\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to
\bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible
with all the coefficient transformations. The $C^\ast$algebras
$E$ and $E'$ are not isomorphic since there is no $\Theta$
as above which is also compatible with the Bockstein operations.
By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair
of nonisomorphic, real rank zero, purely infinite $C^\ast$algebras
with similar properties.
Keywords:$K$theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$algebras, real rank zero, purely infinite, classification Categories:46L35, 46L80, 19K14 
