location:  Publications → journals
Search results

Search: All articles in the CMB digital archive with keyword circle method

 Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2016 (vol 59 pp. 599)

Liu, Zhixin
 Small Prime Solutions to Cubic Diophantine Equations II Let $a_1, \cdots, a_9$ be non-zero integers and $n$ any integer. Suppose that $a_1+\cdots+a_9 \equiv n( \textrm{mod}\,2)$ and $(a_i, a_j)=1$ for $1 \leq i \lt j \leq 9$. In this paper we prove that (i) if $a_j$ are not all of the same sign, then the cubic equation $a_1p_1^3+\cdots +a_9p_9^3=n$ has prime solutions satisfying $p_j \ll |n|^{1/3}+\textrm{max}\{|a_j|\}^{8+\varepsilon};$ (ii) if all $a_j$ are positive and $n \gg \textrm{max}\{|a_j|\}^{25+\varepsilon}$, then $a_1p_1^3+\cdots +a_9p_9^3=n$ is soluble in primes $p_j$. This results improve our previous results (Canad. Math. Bull., 56 (2013), 785-794) with the bounds $\textrm{max}\{|a_j|\}^{14+\varepsilon}$ and $\textrm{max}\{|a_j|\}^{43+\varepsilon}$ in place of $\textrm{max}\{|a_j|\}^{8+\varepsilon}$ and $\textrm{max}\{|a_j|\}^{25+\varepsilon}$ above, respectively. Keywords:small prime, Waring-Goldbach problem, circle methodCategories:11P32, 11P05, 11P55

2. CMB 2012 (vol 56 pp. 785)

Liu, Zhixin
 Small Prime Solutions to Cubic Diophantine Equations Let $a_1, \cdots, a_9$ be non-zero integers and $n$ any integer. Suppose that $a_1+\cdots+a_9 \equiv n( \textrm{mod}\,2)$ and $(a_i, a_j)=1$ for $1 \leq i \lt j \leq 9$. In this paper we prove that (i) if $a_j$ are not all of the same sign, then the above cubic equation has prime solutions satisfying $p_j \ll |n|^{1/3}+\textrm{max}\{|a_j|\}^{14+\varepsilon};$ and (ii) if all $a_j$ are positive and $n \gg \textrm{max}\{|a_j|\}^{43+\varepsilon}$, then the cubic equation $a_1p_1^3+\cdots +a_9p_9^3=n$ is soluble in primes $p_j$. This result is the extension of the linear and quadratic relative problems. Keywords:small prime, Waring-Goldbach problem, circle methodCategories:11P32, 11P05, 11P55
 top of page | contact us | privacy | site map |