1. CMB 2016 (vol 59 pp. 641)
 Shaveisi, Farzad

Some Results on the Annihilatingideal Graphs
The annihilatingideal graph
of a commutative ring $R$, denoted by $\mathbb{AG}(R)$, is a
graph whose vertex set consists of all nonzero annihilating
ideals and two distinct
vertices $I$ and $J$ are adjacent if and only if $IJ=(0)$. Here,
we show that if $R$ is a reduced ring and the independence
number of $\mathbb{AG}(R)$ is finite, then the edge chromatic
number of $\mathbb{AG}(R)$ equals its maximum degree
and this number equals $2^{{\rm Min}(R)1}1$; also, it is
proved that the independence number of $\mathbb{AG}(R)$ equals
$2^{{\rm Min}(R)1}$, where ${\rm Min}(R)$ denotes the set
of minimal prime ideals of $R$.
Then we give some criteria for a graph to be isomorphic with
an annihilatingideal graph of a ring.
For example, it is shown that every bipartite annihilatingideal
graph is a complete bipartite graph with at most two horns. Among
other results, it is shown that a finite graph $\mathbb{AG}(R)$
is not Eulerian, and it is Hamiltonian if and only if $R$ contains
no Gorenstain ring as its direct summand.
Keywords:annihilatingideal graph, independence number, edge chromatic number, bipartite, cycle Categories:05C15, 05C69, 13E05, 13E10 

2. CMB 2011 (vol 56 pp. 317)
 Dorais, François G.

A Note on Conjectures of F. Galvin and R. Rado
In 1968, Galvin conjectured that an uncountable poset $P$ is the
union of countably many chains if and only if this is true for every
subposet $Q \subseteq P$ with size $\aleph_1$. In 1981, Rado
formulated a similar conjecture that an uncountable interval graph $G$ is countably
chromatic if and only if this is true for every induced subgraph $H
\subseteq G$ with size $\aleph_1$. TodorÄeviÄ has shown
that Rado's Conjecture is consistent relative to the existence of a
supercompact cardinal, while the consistency of Galvin's Conjecture
remains open. In this paper, we survey and collect a variety of
results related to these two conjectures. We also show that the
extension of Rado's conjecture to the class of all chordal graphs is
relatively consistent with the existence of a supercompact cardinal.
Keywords:Galvin conjecture, Rado conjecture, perfect graph, comparability graph, chordal graph, cliquecover number, chromatic number Categories:03E05, 03E35, 03E55 
