1. CMB 2016 (vol 59 pp. 392)
2. CMB 2014 (vol 58 pp. 7)
 Boulabiar, Karim

Characters on $C(X)$
The precise condition on a completely regular space $X$ for every character on
$C(X) $ to be an evaluation at some point in $X$ is that $X$ be
realcompact. Usually, this classical result is obtained relying heavily on
involved (and even nonconstructive) extension arguments. This note provides a
direct proof that is accessible to a large audience.
Keywords:characters, realcompact, evaluation, realvalued continuous functions Categories:54C30, 46E25 

3. CMB 2013 (vol 57 pp. 449)
 Alaghmandan, Mahmood; Choi, Yemon; Samei, Ebrahim

ZLamenability Constants of Finite Groups with Two Character Degrees
We calculate the exact amenability constant of the centre of
$\ell^1(G)$ when $G$ is one of the following classes of finite group:
dihedral; extraspecial; or Frobenius with abelian complement and
kernel. This is done using a formula which applies to all finite
groups with two character degrees. In passing, we answer in the
negative a question raised in work of the third author with Azimifard
and Spronk (J. Funct. Anal. 2009).
Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups Categories:43A20, 20C15 

4. CMB 2013 (vol 57 pp. 125)
 Mlaiki, Nabil M.

Camina Triples
In this paper, we study Camina triples. Camina triples are a
generalization of Camina pairs. Camina pairs were first introduced
in 1978 by A .R. Camina.
Camina's work
was inspired by the study of Frobenius groups. We
show that if $(G,N,M)$ is a Camina triple, then either $G/N$ is a
$p$group, or $M$ is abelian, or $M$ has a nontrivial nilpotent or
Frobenius quotient.
Keywords:Camina triples, Camina pairs, nilpotent groups, vanishing off subgroup, irreducible characters, solvable groups Category:20D15 

5. CMB 2013 (vol 57 pp. 9)
6. CMB 2002 (vol 45 pp. 337)
 Chen, Imin

Surjectivity of $\mod\ell$ Representations Attached to Elliptic Curves and Congruence Primes
For a modular elliptic curve $E/\mathbb{Q}$, we show a number of
links between the primes $\ell$ for which the mod $\ell$
representation of $E/\mathbb{Q}$ has projective dihedral image and
congruence primes for the newform associated to $E/\mathbb{Q}$.
Keywords:torsion points of elliptic curves, Galois representations, congruence primes, Serre tori, grossencharacters, nonsplit Cartan Categories:11G05, 11F80 
