CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword basic sequence

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Ghenciu, Ioana
Limited Sets and Bibasic Sequences
Bibasic sequences are used to study relative weak compactness and relative norm compactness of limited sets.

Keywords:limited sets, $L$-sets, bibasic sequences, the Dunford-Pettis property
Categories:46B20, 46B28, 28B05

2. CMB 2009 (vol 53 pp. 118)

Lewis, Paul
The Uncomplemented Spaces $W(X,Y)$ and $K(X,Y)$
Classical results of Kalton and techniques of Feder are used to study the complementation of the space $W(X, Y)$ of weakly compact operators and the space $K(X,Y)$ of compact operators in the space $L(X,Y)$ of all bounded linear maps from X to Y.

Keywords:spaces of operators, complemented subspace, weakly compact operator, basic sequence
Categories:46B28, 46B15, 46B20

3. CMB 2009 (vol 52 pp. 213)

Ghenciu, Ioana; Lewis, Paul
Dunford--Pettis Properties and Spaces of Operators
J. Elton used an application of Ramsey theory to show that if $X$ is an infinite dimensional Banach space, then $c_0$ embeds in $X$, $\ell_1$ embeds in $X$, or there is a subspace of $X$ that fails to have the Dunford--Pettis property. Bessaga and Pelczynski showed that if $c_0$ embeds in $X^*$, then $\ell_\infty$ embeds in $X^*$. Emmanuele and John showed that if $c_0$ embeds in $K(X,Y)$, then $K(X,Y)$ is not complemented in $L(X,Y)$. Classical results from Schauder basis theory are used in a study of Dunford--Pettis sets and strong Dunford--Pettis sets to extend each of the preceding theorems. The space $L_{w^*}(X^* , Y)$ of $w^*-w$ continuous operators is also studied.

Keywords:Dunford--Pettis property, Dunford--Pettis set, basic sequence, complemented spaces of operators
Categories:46B20, 46B28

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/