Expand all Collapse all | Results 1 - 3 of 3 |
1. CMB 2014 (vol 57 pp. 735)
On the Theorem of the Primitive Element with Applications to the Representation Theory of Associative and Lie Algebras |
On the Theorem of the Primitive Element with Applications to the Representation Theory of Associative and Lie Algebras We describe of all finite
dimensional uniserial representations of a commutative associative
(resp. abelian Lie) algebra over a perfect (resp. sufficiently
large perfect) field. In the Lie case the size of the field
depends on the answer to following question, considered and solved
in this paper. Let $K/F$ be a finite separable field extension
and
let $x,y\in K$. When is $F[x,y]=F[\alpha x+\beta y]$ for some
non-zero elements $\alpha,\beta\in F$?
Keywords:uniserial module, Lie algebra, associative algebra, primitive element Categories:17B10, 13C05, 12F10, 12E20 |
2. CMB 2011 (vol 55 pp. 351)
Rational Homogeneous Algebras An algebra $A$ is homogeneous if the automorphism group of $A$
acts transitively on the one-dimensional subspaces of $A$. The existence of homogeneous algebras depends critically on the choice of the scalar field. We examine the case where the scalar field is the rationals. We prove that if $A$ is a rational homogeneous algebra with $\operatorname{dim} A>1$, then $A^{2}=0$.
Keywords:non-associative algebra, homogeneous, automorphism Categories:17D99, 17A36 |
3. CMB 2000 (vol 43 pp. 3)
Resolutions of Associative and Lie Algebras Certain canonical resolutions are described for free associative and
free Lie algebras in the category of non-associative algebras. These
resolutions derive in both cases from geometric objects, which in turn
reflect the combinatorics of suitable collections of leaf-labeled
trees.
Keywords:resolutions, homology, Lie algebras, associative algebras, non-associative algebras, Jacobi identity, leaf-labeled trees, associahedron Categories:18G10, 05C05, 16S10, 17B01, 17A50, 18G50 |