CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword amenable

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Kamalov, F.
Property T and Amenable Transformation Group $C^*$-algebras
It is well known that a discrete group which is both amenable and has Kazhdan's Property T must be finite. In this note we generalize the above statement to the case of transformation groups. We show that if $G$ is a discrete amenable group acting on a compact Hausdorff space $X$, then the transformation group $C^*$-algebra $C^*(X, G)$ has Property T if and only if both $X$ and $G$ are finite. Our approach does not rely on the use of tracial states on $C^*(X, G)$.

Keywords:Property T, $C^*$-algebras, transformation group, amenable
Categories:46L55, 46L05

2. CMB 2012 (vol 57 pp. 37)

Dashti, Mahshid; Nasr-Isfahani, Rasoul; Renani, Sima Soltani
Character Amenability of Lipschitz Algebras
Let ${\mathcal X}$ be a locally compact metric space and let ${\mathcal A}$ be any of the Lipschitz algebras ${\operatorname{Lip}_{\alpha}{\mathcal X}}$, ${\operatorname{lip}_{\alpha}{\mathcal X}}$ or ${\operatorname{lip}_{\alpha}^0{\mathcal X}}$. In this paper, we show, as a consequence of rather more general results on Banach algebras, that ${\mathcal A}$ is $C$-character amenable if and only if ${\mathcal X}$ is uniformly discrete.

Keywords:character amenable, character contractible, Lipschitz algebras, spectrum
Categories:43A07, 46H05, 46J10

3. CMB 2003 (vol 46 pp. 632)

Runde, Volker
The Operator Amenability of Uniform Algebras
We prove a quantized version of a theorem by M.~V.~She\u{\i}nberg: A uniform algebra equipped with its canonical, {\it i.e.}, minimal, operator space structure is operator amenable if and only if it is a commutative $C^\ast$-algebra.

Keywords:uniform algebras, amenable Banach algebras, operator amenability, minimal, operator space
Categories:46H20, 46H25, 46J10, 46J40, 47L25

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/