Expand all Collapse all | Results 1 - 5 of 5 |
1. CMB Online first
Measures of Noncompactness in Regular Spaces Previous results by the author on the connection
between three of measures
of non-compactness obtained for $L_p$, are extended
to regular spaces of measurable
functions.
An example of advantage
in some cases one of them in comparison with another is given.
Geometric characteristics of regular spaces are determined.
New theorems for $(k,\beta)$-boundedness of partially additive
operators are proved.
Keywords:measure of non-compactness, condensing map, partially additive operator, regular space, ideal space Categories:47H08, 46E30, 47H99, 47G10 |
2. CMB Online first
On Convolutions of Convex Sets and Related Problems We prove some results concerning covolutions, the
additive energy and sumsets of convex sets and its generalizations. In
particular, we show that if a set $A=\{a_1,\dots,a_n\}_\lt \subseteq
\mathbb R$ has
the property that for every fixed
$1\leqslant d\lt n,$ all differences $a_i-a_{i-d}$, $d\lt i\lt n,$ are distinct, then
$|A+A|\gg |A|^{3/2+c}$ for a constant $c\gt 0.$
Keywords:convex sets, additive energy, sumsets Category:11B99 |
3. CMB 2010 (vol 54 pp. 180)
Additive Families of Low Borel Classes and Borel Measurable Selectors
An important conjecture in the theory of Borel sets in non-separable
metric spaces is whether any point-countable Borel-additive family in
a complete metric space has a $\sigma$-discrete refinement. We confirm the conjecture for
point-countable $\mathbf\Pi_3^0$-additive families, thus generalizing results of
R. W. Hansell and the first author. We apply this result to the
existence of Borel measurable selectors for multivalued mappings of
low Borel complexity, thus answering in the affirmative a particular
version of a question of J. Kaniewski and R. Pol.
Keywords:$\sigma$-discrete refinement, Borel-additive family, measurable selection Categories:54H05, 54E35 |
4. CMB 2009 (vol 52 pp. 295)
On Functions Whose Graph is a Hamel Basis, II We say that a function $h \from \real \to \real$ is a Hamel function
($h \in \ham$) if $h$, considered as a subset of $\real^2$, is a Hamel
basis for $\real^2$. We show that $\A(\ham)\geq\omega$, \emph{i.e.,} for
every finite $F \subseteq \real^\real$ there exists $f\in\real^\real$
such that $f+F \subseteq \ham$. From the previous work of the author
it then follows that $\A(\ham)=\omega$.
Keywords:Hamel basis, additive, Hamel functions Categories:26A21, 54C40, 15A03, 54C30 |
5. CMB 2008 (vol 51 pp. 399)
Linear Equations with Small Prime and Almost Prime Solutions Let $b_1, b_2$ be any integers such that
$\gcd(b_1, b_2)=1$ and $c_1|b_1|<|b_2|\leq c_2|b_1|$, where
$c_1, c_2$ are any given positive constants. Let $n$ be any
integer satisfying $\{gcd(n, b_i)=1$, $i=1,2$. Let $P_k$ denote
any integer with no more than $k$ prime factors, counted according
to multiplicity. In this paper, for almost all $b_2$, we prove (i)
a sharp lower bound for $n$ such that the equation $b_1p+b_2m=n$
is solvable in prime $p$ and almost prime $m=P_k$, $k\geq 3$
whenever both $b_i$ are positive, and (ii) a sharp upper bound for the
least solutions $p, m$ of the above equation whenever $b_i$ are
not of the same sign, where $p$ is a prime and $m=P_k, k\geq 3$.
Keywords:sieve method, additive problem Categories:11P32, 11N36 |