Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword abelian

  Expand all        Collapse all Results 1 - 6 of 6

1. CMB Online first

Gonçalves, Daniel
Simplicity of Partial Skew Group Rings of Abelian Groups
Let $A$ be a ring with local units, $E$ a set of local units for $A$, $G$ an abelian group and $\alpha$ a partial action of $G$ by ideals of $A$ that contain local units. We show that $A\star_{\alpha} G$ is simple if and only if $A$ is $G$-simple and the center of the corner $e\delta_0 (A\star_{\alpha} G) e \delta_0$ is a field for all $e\in E$. We apply the result to characterize simplicity of partial skew group rings in two cases, namely for partial skew group rings arising from partial actions by clopen subsets of a compact set and partial actions on the set level.

Keywords:partial skew group rings, simple rings, partial actions, abelian groups
Categories:16S35, 37B05

2. CMB 2012 (vol 56 pp. 477)

Ayadi, Adlene
Hypercyclic Abelian Groups of Affine Maps on $\mathbb{C}^{n}$
We give a characterization of hypercyclic abelian group $\mathcal{G}$ of affine maps on $\mathbb{C}^{n}$. If $\mathcal{G}$ is finitely generated, this characterization is explicit. We prove in particular that no abelian group generated by $n$ affine maps on $\mathbb{C}^{n}$ has a dense orbit.

Keywords:affine, hypercyclic, dense, orbit, affine group, abelian
Categories:37C85, 47A16

3. CMB 2011 (vol 55 pp. 842)

Sairaiji, Fumio; Yamauchi, Takuya
The Rank of Jacobian Varieties over the Maximal Abelian Extensions of Number Fields: Towards the Frey-Jarden Conjecture
Frey and Jarden asked if any abelian variety over a number field $K$ has the infinite Mordell-Weil rank over the maximal abelian extension $K^{\operatorname{ab}}$. In this paper, we give an affirmative answer to their conjecture for the Jacobian variety of any smooth projective curve $C$ over $K$ such that $\sharp C(K^{\operatorname{ab}})=\infty$ and for any abelian variety of $\operatorname{GL}_2$-type with trivial character.

Keywords:Mordell-Weil rank, Jacobian varieties, Frey-Jarden conjecture, abelian points
Categories:11G05, 11D25, 14G25, 14K07

4. CMB 2004 (vol 47 pp. 398)

McKinnon, David
A Reduction of the Batyrev-Manin Conjecture for Kummer Surfaces
Let $V$ be a $K3$ surface defined over a number field $k$. The Batyrev-Manin conjecture for $V$ states that for every nonempty open subset $U$ of $V$, there exists a finite set $Z_U$ of accumulating rational curves such that the density of rational points on $U-Z_U$ is strictly less than the density of rational points on $Z_U$. Thus, the set of rational points of $V$ conjecturally admits a stratification corresponding to the sets $Z_U$ for successively smaller sets $U$. In this paper, in the case that $V$ is a Kummer surface, we prove that the Batyrev-Manin conjecture for $V$ can be reduced to the Batyrev-Manin conjecture for $V$ modulo the endomorphisms of $V$ induced by multiplication by $m$ on the associated abelian surface $A$. As an application, we use this to show that given some restrictions on $A$, the set of rational points of $V$ which lie on rational curves whose preimages have geometric genus 2 admits a stratification of

Keywords:rational points, Batyrev-Manin conjecture, Kummer, surface, rational curve, abelian surface, height
Categories:11G35, 14G05

5. CMB 2002 (vol 45 pp. 213)

Gordon, B. Brent; Joshi, Kirti
Griffiths Groups of Supersingular Abelian Varieties
The Griffiths group $\Gr^r(X)$ of a smooth projective variety $X$ over an algebraically closed field is defined to be the group of homologically trivial algebraic cycles of codimension $r$ on $X$ modulo the subgroup of algebraically trivial algebraic cycles. The main result of this paper is that the Griffiths group $\Gr^2 (A_{\bar{k}})$ of a supersingular abelian variety $A_{\bar{k}}$ over the algebraic closure of a finite field of characteristic $p$ is at most a $p$-primary torsion group. As a corollary the same conclusion holds for supersingular Fermat threefolds. In contrast, using methods of C.~Schoen it is also shown that if the Tate conjecture is valid for all smooth projective surfaces and all finite extensions of the finite ground field $k$ of characteristic $p>2$, then the Griffiths group of any ordinary abelian threefold $A_{\bar{k}}$ over the algebraic closure of $k$ is non-trivial; in fact, for all but a finite number of primes $\ell\ne p$ it is the case that $\Gr^2 (A_{\bar{k}}) \otimes \Z_\ell \neq 0$.

Keywords:Griffiths group, Beauville conjecture, supersingular Abelian variety, Chow group
Categories:14J20, 14C25

6. CMB 2000 (vol 43 pp. 183)

Ionesei, Gheorghe
A Gauge Theoretic Proof of the Abel-Jacobi Theorem
We present a new, simple proof of the classical Abel-Jacobi theorem using some elementary gauge theoretic arguments.

Keywords:Abel-Jacobi theorem, abelian gauge theory
Categories:58D27, 30F99

© Canadian Mathematical Society, 2014 :