1. CMB 2016 (vol 59 pp. 381)
 Moameni, Abbas

Supports of Extremal Doubly Stochastic Measures
A doubly stochastic measure on the unit square is a Borel probability
measure whose horizontal and vertical marginals both coincide
with the Lebesgue measure. The set of doubly stochastic measures
is convex and compact so its
extremal points are of particular interest. The problem number 111
of
Birkhoff (Lattice Theory 1948) is to provide a necessary and
sufficient condition on the support of a doubly stochastic measure
to guarantee extremality. It was proved by
BeneÅ¡ and Å tÄpÃ¡n that an extremal doubly stochastic measure is concentrated
on a set which admits an aperiodic decomposition.
Hestir and Williams later found a necessary condition which
is nearly sufficient by
further refining the aperiodic structure of the support of extremal
doubly stochastic measures.
Our objective in this work is to
provide a more practical necessary and nearly sufficient
condition for a set to support an extremal doubly stochastic
measure.
Keywords:optimal mass transport, doubly stochastic measures, extremality, uniqueness Category:49Q15 

2. CMB 2015 (vol 59 pp. 119)
3. CMB 2011 (vol 56 pp. 659)
 Yu, ZhiXian; Mei, Ming

Asymptotics and Uniqueness of Travelling Waves for NonMonotone Delayed Systems on 2D Lattices
We establish asymptotics and uniqueness (up
to translation) of travelling waves for delayed 2D lattice equations
with nonmonotone birth functions. First, with the help of
Ikehara's Theorem, the a priori asymptotic behavior of
travelling wave is exactly derived. Then, based on the obtained
asymptotic behavior, the uniqueness of the traveling waves is
proved. These results complement earlier results in the literature.
Keywords:2D lattice systems, traveling waves, asymptotic behavior, uniqueness, nonmonotone nonlinearity Category:35K57 

4. CMB 2011 (vol 55 pp. 285)
 Eloe, Paul W.; Henderson, Johnny; Khan, Rahmat Ali

Uniqueness Implies Existence and Uniqueness Conditions for a Class of $(k+j)$Point Boundary Value Problems for $n$th Order Differential Equations
For the $n$th order nonlinear differential equation, $y^{(n)} = f(x, y, y',
\dots, y^{(n1)})$, we consider uniqueness implies uniqueness and existence
results for solutions satisfying certain $(k+j)$point
boundary conditions for $1\le j \le n1$ and $1\leq k \leq nj$. We
define $(k;j)$point unique solvability in analogy to $k$point
disconjugacy and we show that $(nj_{0};j_{0})$point
unique solvability implies $(k;j)$point unique solvability for $1\le j \le
j_{0}$, and $1\leq k \leq nj$. This result is
analogous to
$n$point disconjugacy implies $k$point disconjugacy for $2\le k\le
n1$.
Keywords:boundary value problem, uniqueness, existence, unique solvability, nonlinear interpolation Categories:34B15, 34B10, 65D05 
