Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword UCT

  Expand all        Collapse all Results 1 - 25 of 45

1. CMB 2014 (vol 57 pp. 264)

Dai, Li; Dong, Jingcheng
On Semisimple Hopf Algebras of Dimension $pq^n$
Let $p,q$ be prime numbers with $p^2\lt q$, $n\in \mathbb{N}$, and $H$ a semisimple Hopf algebra of dimension $pq^n$ over an algebraically closed field of characteristic $0$. This paper proves that $H$ must possess one of the following structures: (1) $H$ is semisolvable; (2) $H$ is a Radford biproduct $R\# kG$, where $kG$ is the group algebra of group $G$ of order $p$, and $R$ is a semisimple Yetter--Drinfeld Hopf algebra in ${}^{kG}_{kG}\mathcal{YD}$ of dimension $q^n$.

Keywords:semisimple Hopf algebra, semisolvability, Radford biproduct, Drinfeld double

2. CMB 2013 (vol 57 pp. 375)

López, S. C.; Muntaner-Batle, ; Rius-Font,
A Problem on Edge-magic Labelings of Cycles
Kotzig and Rosa defined in 1970 the concept of edge-magic labelings as follows: let $G$ be a simple $(p,q)$-graph (that is, a graph of order $p$ and size $q$ without loops or multiple edges). A bijective function $f:V(G)\cup E(G)\rightarrow \{1,2,\ldots,p+q\}$ is an edge-magic labeling of $G$ if $f(u)+f(uv)+f(v)=k$, for all $uv\in E(G)$. A graph that admits an edge-magic labeling is called an edge-magic graph, and $k$ is called the magic sum of the labeling. An old conjecture of Godbold and Slater sets that all possible theoretical magic sums are attained for each cycle of order $n\ge 7$. Motivated by this conjecture, we prove that for all $n_0\in \mathbb{N}$, there exists $n\in \mathbb{N}$, such that the cycle $C_n$ admits at least $n_0$ edge-magic labelings with at least $n_0$ mutually distinct magic sums. We do this by providing a lower bound for the number of magic sums of the cycle $C_n$, depending on the sum of the exponents of the odd primes appearing in the prime factorization of $n$.

Keywords:edge-magic, valence, $\otimes_h$-product

3. CMB 2013 (vol 57 pp. 245)

Brodskiy, N.; Dydak, J.; Lang, U.
Assouad-Nagata Dimension of Wreath Products of Groups
Consider the wreath product $H\wr G$, where $H\ne 1$ is finite and $G$ is finitely generated. We show that the Assouad-Nagata dimension $\dim_{AN}(H\wr G)$ of $H\wr G$ depends on the growth of $G$ as follows: \par If the growth of $G$ is not bounded by a linear function, then $\dim_{AN}(H\wr G)=\infty$, otherwise $\dim_{AN}(H\wr G)=\dim_{AN}(G)\leq 1$.

Keywords:Assouad-Nagata dimension, asymptotic dimension, wreath product, growth of groups
Categories:54F45, 55M10, 54C65

4. CMB Online first

Jeong, Imsoon; Kim, Seonhui; Suh, Young Jin
Real Hypersurfaces in Complex Two-Plane Grassmannians with Reeb Parallel Structure Jacobi Operator
In this paper we give a characterization of a real hypersurface of Type~$(A)$ in complex two-plane Grassmannians ${ { {G_2({\mathbb C}^{m+2})} } }$, which means a tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in ${G_2({\mathbb C}^{m+2})}$, by the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.

Keywords:real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator
Categories:53C40, 53C15

5. CMB 2013 (vol 57 pp. 401)

Perrone, Domenico
Curvature of $K$-contact Semi-Riemannian Manifolds
In this paper we characterize $K$-contact semi-Riemannian manifolds and Sasakian semi-Riemannian manifolds in terms of curvature. Moreover, we show that any conformally flat $K$-contact semi-Riemannian manifold is Sasakian and of constant sectional curvature $\kappa=\varepsilon$, where $\varepsilon =\pm 1$ denotes the causal character of the Reeb vector field. Finally, we give some results about the curvature of a $K$-contact Lorentzian manifold.

Keywords:contact semi-Riemannian structures, $K$-contact structures, conformally flat manifolds, Einstein Lorentzian-Sasaki manifolds
Categories:53C50, 53C25, 53B30

6. CMB Online first

Lu, Yufeng; Yang, Dachun; Yuan, Wen
Interpolation of Morrey Spaces on Metric Measure Spaces
In this article, via the classical complex interpolation method and some interpolation methods traced to Gagliardo, the authors obtain an interpolation theorem for Morrey spaces on quasi-metric measure spaces, which generalizes some known results on ${\mathbb R}^n$.

Keywords:complex interpolation, Morrey space, Gagliardo interpolation, Calderón product, quasi-metric measure space
Categories:46B70, 46E30

7. CMB 2012 (vol 57 pp. 326)

Ivanov, S. V.; Mikhailov, Roman
On Zero-divisors in Group Rings of Groups with Torsion
Nontrivial pairs of zero-divisors in group rings are introduced and discussed. A problem on the existence of nontrivial pairs of zero-divisors in group rings of free Burnside groups of odd exponent $n \gg 1$ is solved in the affirmative. Nontrivial pairs of zero-divisors are also found in group rings of free products of groups with torsion.

Keywords:Burnside groups, free products of groups, group rings, zero-divisors
Categories:20C07, 20E06, 20F05, , 20F50

8. CMB 2012 (vol 57 pp. 97)

Levy, Jason
Rationality and the Jordan-Gatti-Viniberghi decomposition
We verify our earlier conjecture and use it to prove that the semisimple parts of the rational Jordan-Kac-Vinberg decompositions of a rational vector all lie in a single rational orbit.

Keywords:reductive group, $G$-module, Jordan decomposition, orbit closure, rationality
Categories:20G15, 14L24

9. CMB 2012 (vol 57 pp. 80)

Khemphet, Anchalee; Peters, Justin R.
Semicrossed Products of the Disk Algebra and the Jacobson Radical
We consider semicrossed products of the disk algebra with respect to endomorphisms defined by finite Blaschke products. We characterize the Jacobson radical of these operator algebras. Furthermore, in the case the finite Blaschke product is elliptic, we show that the semicrossed product contains no nonzero quasinilpotent elements. However, if the finite Blaschke product is hyperbolic or parabolic with positive hyperbolic step, the Jacobson radical is nonzero and a proper subset of the set of quasinilpotent elements.

Keywords:semicrossed product, disk algebra, Jacobson radical
Categories:47L65, 47L20, 30J10, 30H50

10. CMB 2012 (vol 56 pp. 647)

Valverde, Cesar
On Induced Representations Distinguished by Orthogonal Groups
Let $F$ be a local non-archimedean field of characteristic zero. We prove that a representation of $GL(n,F)$ obtained from irreducible parabolic induction of supercuspidal representations is distinguished by an orthogonal group only if the inducing data is distinguished by appropriate orthogonal groups. As a corollary, we get that an irreducible representation induced from supercuspidals that is distinguished by an orthogonal group is metic.

Keywords:distinguished representation, parabolic induction

11. CMB 2012 (vol 56 pp. 870)

Wei, Changguo
Note on Kasparov Product of $C^*$-algebra Extensions
Using the Dadarlat isomorphism, we give a characterization for the Kasparov product of $C^*$-algebra extensions. A certain relation between $KK(A, \mathcal q(B))$ and $KK(A, \mathcal q(\mathcal k B))$ is also considered when $B$ is not stable and it is proved that $KK(A, \mathcal q(B))$ and $KK(A, \mathcal q(\mathcal k B))$ are not isomorphic in general.

Keywords:extension, Kasparov product, $KK$-group

12. CMB 2011 (vol 56 pp. 306)

Pérez, Juan de Dios; Suh, Young Jin
Real Hypersurfaces in Complex Projective Space Whose Structure Jacobi Operator is Lie $\mathbb{D}$-parallel
We prove the non-existence of real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\mathbb{D}$-parallel and satisfies a further condition.

Keywords:complex projective space, real hypersurface, structure Jacobi operator
Categories:53C15, 53C40

13. CMB 2011 (vol 55 pp. 783)

Motallebi, M. R.; Saiflu, H.
Products and Direct Sums in Locally Convex Cones
In this paper we define lower, upper, and symmetric completeness and discuss closure of the sets in product and direct sums. In particular, we introduce suitable bases for these topologies, which leads us to investigate completeness of the direct sum and its components. Some results obtained about $X$-topologies and polars of the neighborhoods.

Keywords:product and direct sum, duality, locally convex cone
Categories:20K25, 46A30, 46A20

14. CMB 2011 (vol 56 pp. 203)

Tall, Franklin D.
Productively Lindelöf Spaces May All Be $D$
We give easy proofs that (a) the Continuum Hypothesis implies that if the product of $X$ with every Lindelöf space is Lindelöf, then $X$ is a $D$-space, and (b) Borel's Conjecture implies every Rothberger space is Hurewicz.

Keywords:productively Lindelöf, $D$-space, projectively $\sigma$-compact, Menger, Hurewicz
Categories:54D20, 54B10, 54D55, 54A20, 03F50

15. CMB 2011 (vol 56 pp. 136)

Munteanu, Radu-Bogdan
On Constructing Ergodic Hyperfinite Equivalence Relations of Non-Product Type
Product type equivalence relations are hyperfinite measured equivalence relations, which, up to orbit equivalence, are generated by product type odometer actions. We give a concrete example of a hyperfinite equivalence relation of non-product type, which is the tail equivalence on a Bratteli diagram. In order to show that the equivalence relation constructed is not of product type we will use a criterion called property A. This property, introduced by Krieger for non-singular transformations, is defined directly for hyperfinite equivalence relations in this paper.

Keywords:property A, hyperfinite equivalence relation, non-product type
Categories:37A20, 37A35, 46L10

16. CMB 2011 (vol 55 pp. 586)

Nie, Zhaohu
On Sha's Secondary Chern-Euler Class
For a manifold with boundary, the restriction of Chern's transgression form of the Euler curvature form over the boundary is closed. Its cohomology class is called the secondary Chern-Euler class and was used by Sha to formulate a relative Poincaré-Hopf theorem under the condition that the metric on the manifold is locally product near the boundary. We show that the secondary Chern-Euler form is exact away from the outward and inward unit normal vectors of the boundary by explicitly constructing a transgression form. Using Stokes' theorem, this evaluates the boundary term in Sha's relative Poincaré-Hopf theorem in terms of more classical indices of the tangential projection of a vector field. This evaluation in particular shows that Sha's relative Poincaré-Hopf theorem is equivalent to the more classical law of vector fields.

Keywords:transgression, secondary Chern-Euler class, locally product metric, law of vector fields
Categories:57R20, 57R25

17. CMB 2011 (vol 54 pp. 456)

Gustafson, Karl
On Operator Sum and Product Adjoints and Closures
We comment on domain conditions that regulate when the adjoint of the sum or product of two unbounded operators is the sum or product of their adjoints, and related closure issues. The quantum mechanical problem PHP essentially selfadjoint for unbounded Hamiltonians is addressed, with new results.

Keywords:unbounded operators, adjoints of sums and products, quantum mechanics

18. CMB 2011 (vol 55 pp. 67)

Cummins, C. J.; Duncan, J. F.
An $E_8$ Correspondence for Multiplicative Eta-Products
We describe an $E_8$ correspondence for the multiplicative eta-products of weight at least $4$.

Keywords:We describe an E8 correspondence for the multiplicative eta-products of weight at least 4.
Categories:11F20, 11F12, 17B60

19. CMB 2011 (vol 54 pp. 506)

Neamaty, A.; Mosazadeh, S.
On the Canonical Solution of the Sturm-Liouville Problem with Singularity and Turning Point of Even Order
In this paper, we are going to investigate the canonical property of solutions of systems of differential equations having a singularity and turning point of even order. First, by a replacement, we transform the system to the Sturm-Liouville equation with turning point. Using of the asymptotic estimates provided by Eberhard, Freiling, and Schneider for a special fundamental system of solutions of the Sturm-Liouville equation, we study the infinite product representation of solutions of the systems. Then we transform the Sturm-Liouville equation with turning point to the equation with singularity, then we study the asymptotic behavior of its solutions. Such representations are relevant to the inverse spectral problem.

Keywords:turning point, singularity, Sturm-Liouville, infinite products, Hadamard's theorem, eigenvalues
Categories:34B05, 34Lxx, 47E05

20. CMB 2011 (vol 54 pp. 498)

Mortad, Mohammed Hichem
On the Adjoint and the Closure of the Sum of Two Unbounded Operators
We prove, under some conditions on the domains, that the adjoint of the sum of two unbounded operators is the sum of their adjoints in both Hilbert and Banach space settings. A similar result about the closure of operators is also proved. Some interesting consequences and examples "spice up" the paper.

Keywords:unbounded operators, sum and products of operators, Hilbert and Banach adjoints, self-adjoint operators, closed operators, closure of operators

21. CMB 2011 (vol 54 pp. 422)

Pérez, Juan de Dios; Suh, Young Jin
Two Conditions on the Structure Jacobi Operator for Real Hypersurfaces in Complex Projective Space
We classify real hypersurfaces in complex projective space whose structure Jacobi operator satisfies two conditions at the same time.

Keywords:complex projective space, real hypersurface, structure Jacobi operator, two conditions
Categories:53C15, 53B25

22. CMB 2011 (vol 54 pp. 472)

Iacono, Donatella
A Semiregularity Map Annihilating Obstructions to Deforming Holomorphic Maps
We study infinitesimal deformations of holomorphic maps of compact, complex, Kähler manifolds. In particular, we describe a generalization of Bloch's semiregularity map that annihilates obstructions to deform holomorphic maps with fixed codomain.

Keywords:semiregularity map, obstruction theory, functors of Artin rings, differential graded Lie algebras
Categories:13D10, 14D15, 14B10

23. CMB 2011 (vol 54 pp. 283)

Hillman, J. A.; Roushon, S. K.
Surgery on $\widetilde{\mathbb{SL}} \times \mathbb{E}^n$-Manifolds
We show that closed $\widetilde{\mathbb{SL}} \times \mathbb{E}^n$-manifolds are topologically rigid if $n\geq 2$, and are rigid up to $s$-cobordism, if $n=1$.

Keywords:topological rigidity, geometric structure, surgery groups
Categories:57R67, 57N16

24. CMB 2010 (vol 54 pp. 141)

Kim, Sang Og; Park, Choonkil
Linear Maps on $C^*$-Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$
For $C^*$-algebras $\mathcal{A}$ of real rank zero, we describe linear maps $\phi$ on $\mathcal{A}$ that are surjective up to ideals $\mathcal{I}$, and $\pi(A)$ is invertible in $\mathcal{A}/\mathcal{I}$ if and only if $\pi(\phi(A))$ is invertible in $\mathcal{A}/\mathcal{I}$, where $A\in\mathcal{A}$ and $\pi:\mathcal{A}\to\mathcal{A}/\mathcal{I}$ is the quotient map. We also consider similar linear maps preserving zero products on the Calkin algebra.

Keywords:preservers, Jordan automorphisms, invertible operators, zero products
Categories:47B48, 47A10, 46H10

25. CMB 2010 (vol 54 pp. 100)

Fan, Dashan; Wu, Huoxiong
On the Generalized Marcinkiewicz Integral Operators with Rough Kernels
A class of generalized Marcinkiewicz integral operators is introduced, and, under rather weak conditions on the integral kernels, the boundedness of such operators on $L^p$ and Triebel--Lizorkin spaces is established.

Keywords: Marcinkiewicz integral, Littlewood--Paley theory, Triebel--Lizorkin space, rough kernel, product domain
Categories:42B20, , , , , 42B25, 42B30, 42B99
   1 2    

© Canadian Mathematical Society, 2014 :