Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword UCT

  Expand all        Collapse all Results 1 - 25 of 55

1. CMB Online first

Ilten, Nathan; Teitler, Zach
Product Ranks of the $3\times 3$ Determinant and Permanent
We show that the product rank of the $3 \times 3$ determinant $\det_3$ is $5$, and the product rank of the $3 \times 3$ permanent $\operatorname{perm}_3$ is $4$. As a corollary, we obtain that the tensor rank of $\det_3$ is $5$ and the tensor rank of $\operatorname{perm}_3$ is $4$. We show moreover that the border product rank of $\operatorname{perm}_n$ is larger than $n$ for any $n\geq 3$.

Keywords:product rank, tensor rank, determinant, permanent, Fano schemes
Categories:15A21, 15A69, 14M12, 14N15

2. CMB Online first

Jiang, Chunlan; Shi, Rui
On the uniqueness of Jordan canonical form decompositions of operators by $K$-theoretical data
In this paper, we develop a generalized Jordan canonical form theorem for a certain class of operators in $\mathcal {L}(\mathcal {H})$. A complete criterion for similarity for this class of operators in terms of $K$-theory for Banach algebras is given.

Keywords:strongly irreducible operator, similarity invariant, reduction theory of von Neumann algebras, $K$-theory
Categories:47A15, 47C15, 47A65

3. CMB Online first

Li, Dan; Ma, Wanbiao
Dynamical Analysis of a Stage-Structured Model for Lyme Disease with two delays
In this paper, a nonlinear stage-structured model for Lyme disease is considered. The model is a system of differential equations with two time delays. The basic reproductive rate, $R_0(\tau_1,\tau_2)$, is derived. If $R_0(\tau_1,\tau_2)\lt 1$, then the boundary equilibrium is globally asymptotically stable. If $R_0(\tau_1,\tau_2)\gt 1$, then there exists a unique positive equilibrium whose local asymptotical stability and the existence of Hopf bifurcations are established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions is derived by using the normal form and the center manifold theory. Some numerical simulations are performed to confirm the correctness of theoretical analysis. At last, some conclusions are given.

Keywords:Lyme disease, stage-structure, time delay, Lyapunov functional stability Hopf bifurcation.

4. CMB 2015 (vol 58 pp. 877)

Zaatra, Mohamed
Generating Some Symmetric Semi-classical Orthogonal Polynomials
We show that if $v$ is a regular semi-classical form (linear functional), then the symmetric form $u$ defined by the relation $x^{2}\sigma u = -\lambda v$, where $(\sigma f)(x)=f(x^{2})$ and the odd moments of $u$ are $0$, is also regular and semi-classical form for every complex $\lambda $ except for a discrete set of numbers depending on $v$. We give explicitly the three-term recurrence relation and the structure relation coefficients of the orthogonal polynomials sequence associated with $u$ and the class of the form $u$ knowing that of $v$. We conclude with an illustrative example.

Keywords:orthogonal polynomials, quadratic decomposition, semi-classical forms, structure relation
Categories:33C45, 42C05

5. CMB 2015 (vol 58 pp. 858)

Williams, Kenneth S.
Ternary Quadratic Forms and Eta Quotients
Let $\eta(z)$ $(z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0)$ denote the Dedekind eta function. We use a recent product-to-sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly 10 eta quotients \[ f(z):=\eta^{a(m_1)}(m_1 z)\cdots \eta^{{a(m_r)}}(m_r z)=\sum_{n=1}^{\infty}c(n)e^{2\pi i nz},\quad z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0, \] such that the Fourier coefficients $c(n)$ vanish for all positive integers $n$ in each of infinitely many non-overlapping arithmetic progressions. For example, it is shown that for $f(z)=\eta^4(z)\eta^{9}(4z)\eta^{-2}(8z)$ we have $c(n)=0$ for all $n$ in each of the arithmetic progressions $\{16k+14\}_{k \geq 0}$, $\{64k+56\}_{k \geq 0}$, $\{256k+224\}_{k \geq 0}$, $\{1024k+896\}_{k \geq 0}$, $\ldots$.

Keywords:Dedekind eta function, eta quotient, ternary quadratic forms, vanishing of Fourier coefficients, product-to-sum formula
Categories:11F20, 11E20, 11E25

6. CMB 2015 (vol 58 pp. 730)

Efrat, Ido; Matzri, Eliyahu
Vanishing of Massey Products and Brauer Groups
Let $p$ be a prime number and $F$ a field containing a root of unity of order $p$. We relate recent results on vanishing of triple Massey products in the mod-$p$ Galois cohomology of $F$, due to Hopkins, Wickelgren, Mináċ, and Tân, to classical results in the theory of central simple algebras. For global fields, we prove a stronger form of the vanishing property.

Keywords:Galois cohomology, Brauer groups, triple Massey products, global fields
Categories:16K50, 11R34, 12G05, 12E30

7. CMB 2015 (vol 58 pp. 548)

Lü, Guangshi; Sankaranarayanan, Ayyadurai
Higher Moments of Fourier Coefficients of Cusp Forms
Let $S_{k}(\Gamma)$ be the space of holomorphic cusp forms of even integral weight $k$ for the full modular group $SL(2, \mathbb{Z})$. Let $\lambda_f(n)$, $\lambda_g(n)$, $\lambda_h(n)$ be the $n$th normalized Fourier coefficients of three distinct holomorphic primitive cusp forms $f(z) \in S_{k_1}(\Gamma), g(z) \in S_{k_2}(\Gamma), h(z) \in S_{k_3}(\Gamma)$ respectively. In this paper we study the cancellations of sums related to arithmetic functions, such as $\lambda_f(n)^4\lambda_g(n)^2$, $\lambda_g(n)^6$, $\lambda_g(n)^2\lambda_h(n)^4$, and $\lambda_g(n^3)^2$ twisted by the arithmetic function $\lambda_f(n)$.

Keywords:Fourier coefficients of automorphic forms, Dirichlet series, triple product $L$-function, Perron's formula
Categories:11F30, 11F66

8. CMB 2015 (vol 58 pp. 374)

Szabó, Gábor
A Short Note on the Continuous Rokhlin Property and the Universal Coefficient Theorem in $E$-Theory
Let $G$ be a metrizable compact group, $A$ a separable $\mathrm{C}^*$-algebra and $\alpha\colon G\to\operatorname{Aut}(A)$ a strongly continuous action. Provided that $\alpha$ satisfies the continuous Rokhlin property, we show that the property of satisfying the UCT in $E$-theory passes from $A$ to the crossed product $\mathrm{C}^*$-algebra $A\rtimes_\alpha G$ and the fixed point algebra $A^\alpha$. This extends a similar result by Gardella for $KK$-theory in the case of unital $\mathrm{C}^*$-algebras, but with a shorter and less technical proof. For circle actions on separable, unital $\mathrm{C}^*$-algebras with the continuous Rokhlin property, we establish a connection between the $E$-theory equivalence class of $A$ and that of its fixed point algebra $A^\alpha$.

Keywords:Rokhlin property, UCT, KK-theory, E-theory, circle actions
Categories:46L55, 19K35

9. CMB 2015 (vol 58 pp. 281)

Kalus, Matthias
On the Relation of Real and Complex Lie Supergroups
A complex Lie supergroup can be described as a real Lie supergroup with integrable almost complex structure. The necessary and sufficient conditions on an almost complex structure on a real Lie supergroup for defining a complex Lie supergroup are deduced. The classification of real Lie supergroups with such almost complex structures yields a new approach to the known classification of complex Lie supergroups by complex Harish-Chandra superpairs. A universal complexification of a real Lie supergroup is constructed.

Keywords:Lie supergroup, almost complex structure, Harish-Chandra pair, universal complexification
Categories:32C11, 58A50

10. CMB 2014 (vol 58 pp. 91)

Hasegawa, Kei
Essential Commutants of Semicrossed Products
Let $\alpha\colon G\curvearrowright M$ be a spatial action of countable abelian group on a "spatial" von Neumann algebra $M$ and $S$ be its unital subsemigroup with $G=S^{-1}S$. We explicitly compute the essential commutant and the essential fixed-points, modulo the Schatten $p$-class or the compact operators, of the w$^*$-semicrossed product of $M$ by $S$ when $M'$ contains no non-zero compact operators. We also prove a weaker result when $M$ is a von Neumann algebra on a finite dimensional Hilbert space and $(G,S)=(\mathbb{Z},\mathbb{Z}_+)$, which extends a famous result due to Davidson (1977) for the classical analytic Toeplitz operators.

Keywords:essential commutant, semicrossed product
Categories:47L65, 47A55

11. CMB 2014 (vol 57 pp. 264)

Dai, Li; Dong, Jingcheng
On Semisimple Hopf Algebras of Dimension $pq^n$
Let $p,q$ be prime numbers with $p^2\lt q$, $n\in \mathbb{N}$, and $H$ a semisimple Hopf algebra of dimension $pq^n$ over an algebraically closed field of characteristic $0$. This paper proves that $H$ must possess one of the following structures: (1) $H$ is semisolvable; (2) $H$ is a Radford biproduct $R\# kG$, where $kG$ is the group algebra of group $G$ of order $p$, and $R$ is a semisimple Yetter--Drinfeld Hopf algebra in ${}^{kG}_{kG}\mathcal{YD}$ of dimension $q^n$.

Keywords:semisimple Hopf algebra, semisolvability, Radford biproduct, Drinfeld double

12. CMB 2013 (vol 57 pp. 375)

López, S. C.; Muntaner-Batle, ; Rius-Font,
A Problem on Edge-magic Labelings of Cycles
Kotzig and Rosa defined in 1970 the concept of edge-magic labelings as follows: let $G$ be a simple $(p,q)$-graph (that is, a graph of order $p$ and size $q$ without loops or multiple edges). A bijective function $f:V(G)\cup E(G)\rightarrow \{1,2,\ldots,p+q\}$ is an edge-magic labeling of $G$ if $f(u)+f(uv)+f(v)=k$, for all $uv\in E(G)$. A graph that admits an edge-magic labeling is called an edge-magic graph, and $k$ is called the magic sum of the labeling. An old conjecture of Godbold and Slater sets that all possible theoretical magic sums are attained for each cycle of order $n\ge 7$. Motivated by this conjecture, we prove that for all $n_0\in \mathbb{N}$, there exists $n\in \mathbb{N}$, such that the cycle $C_n$ admits at least $n_0$ edge-magic labelings with at least $n_0$ mutually distinct magic sums. We do this by providing a lower bound for the number of magic sums of the cycle $C_n$, depending on the sum of the exponents of the odd primes appearing in the prime factorization of $n$.

Keywords:edge-magic, valence, $\otimes_h$-product

13. CMB 2013 (vol 57 pp. 245)

Brodskiy, N.; Dydak, J.; Lang, U.
Assouad-Nagata Dimension of Wreath Products of Groups
Consider the wreath product $H\wr G$, where $H\ne 1$ is finite and $G$ is finitely generated. We show that the Assouad-Nagata dimension $\dim_{AN}(H\wr G)$ of $H\wr G$ depends on the growth of $G$ as follows: \par If the growth of $G$ is not bounded by a linear function, then $\dim_{AN}(H\wr G)=\infty$, otherwise $\dim_{AN}(H\wr G)=\dim_{AN}(G)\leq 1$.

Keywords:Assouad-Nagata dimension, asymptotic dimension, wreath product, growth of groups
Categories:54F45, 55M10, 54C65

14. CMB 2013 (vol 57 pp. 821)

Jeong, Imsoon; Kim, Seonhui; Suh, Young Jin
Real Hypersurfaces in Complex Two-Plane Grassmannians with Reeb Parallel Structure Jacobi Operator
In this paper we give a characterization of a real hypersurface of Type~$(A)$ in complex two-plane Grassmannians ${ { {G_2({\mathbb C}^{m+2})} } }$, which means a tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in ${G_2({\mathbb C}^{m+2})}$, by the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.

Keywords:real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator
Categories:53C40, 53C15

15. CMB 2013 (vol 57 pp. 401)

Perrone, Domenico
Curvature of $K$-contact Semi-Riemannian Manifolds
In this paper we characterize $K$-contact semi-Riemannian manifolds and Sasakian semi-Riemannian manifolds in terms of curvature. Moreover, we show that any conformally flat $K$-contact semi-Riemannian manifold is Sasakian and of constant sectional curvature $\kappa=\varepsilon$, where $\varepsilon =\pm 1$ denotes the causal character of the Reeb vector field. Finally, we give some results about the curvature of a $K$-contact Lorentzian manifold.

Keywords:contact semi-Riemannian structures, $K$-contact structures, conformally flat manifolds, Einstein Lorentzian-Sasaki manifolds
Categories:53C50, 53C25, 53B30

16. CMB 2013 (vol 57 pp. 598)

Lu, Yufeng; Yang, Dachun; Yuan, Wen
Interpolation of Morrey Spaces on Metric Measure Spaces
In this article, via the classical complex interpolation method and some interpolation methods traced to Gagliardo, the authors obtain an interpolation theorem for Morrey spaces on quasi-metric measure spaces, which generalizes some known results on ${\mathbb R}^n$.

Keywords:complex interpolation, Morrey space, Gagliardo interpolation, Calderón product, quasi-metric measure space
Categories:46B70, 46E30

17. CMB 2012 (vol 57 pp. 97)

Levy, Jason
Rationality and the Jordan-Gatti-Viniberghi decomposition
We verify our earlier conjecture and use it to prove that the semisimple parts of the rational Jordan-Kac-Vinberg decompositions of a rational vector all lie in a single rational orbit.

Keywords:reductive group, $G$-module, Jordan decomposition, orbit closure, rationality
Categories:20G15, 14L24

18. CMB 2012 (vol 57 pp. 326)

Ivanov, S. V.; Mikhailov, Roman
On Zero-divisors in Group Rings of Groups with Torsion
Nontrivial pairs of zero-divisors in group rings are introduced and discussed. A problem on the existence of nontrivial pairs of zero-divisors in group rings of free Burnside groups of odd exponent $n \gg 1$ is solved in the affirmative. Nontrivial pairs of zero-divisors are also found in group rings of free products of groups with torsion.

Keywords:Burnside groups, free products of groups, group rings, zero-divisors
Categories:20C07, 20E06, 20F05, , 20F50

19. CMB 2012 (vol 57 pp. 80)

Khemphet, Anchalee; Peters, Justin R.
Semicrossed Products of the Disk Algebra and the Jacobson Radical
We consider semicrossed products of the disk algebra with respect to endomorphisms defined by finite Blaschke products. We characterize the Jacobson radical of these operator algebras. Furthermore, in the case the finite Blaschke product is elliptic, we show that the semicrossed product contains no nonzero quasinilpotent elements. However, if the finite Blaschke product is hyperbolic or parabolic with positive hyperbolic step, the Jacobson radical is nonzero and a proper subset of the set of quasinilpotent elements.

Keywords:semicrossed product, disk algebra, Jacobson radical
Categories:47L65, 47L20, 30J10, 30H50

20. CMB 2012 (vol 56 pp. 647)

Valverde, Cesar
On Induced Representations Distinguished by Orthogonal Groups
Let $F$ be a local non-archimedean field of characteristic zero. We prove that a representation of $GL(n,F)$ obtained from irreducible parabolic induction of supercuspidal representations is distinguished by an orthogonal group only if the inducing data is distinguished by appropriate orthogonal groups. As a corollary, we get that an irreducible representation induced from supercuspidals that is distinguished by an orthogonal group is metic.

Keywords:distinguished representation, parabolic induction

21. CMB 2012 (vol 56 pp. 870)

Wei, Changguo
Note on Kasparov Product of $C^*$-algebra Extensions
Using the Dadarlat isomorphism, we give a characterization for the Kasparov product of $C^*$-algebra extensions. A certain relation between $KK(A, \mathcal q(B))$ and $KK(A, \mathcal q(\mathcal k B))$ is also considered when $B$ is not stable and it is proved that $KK(A, \mathcal q(B))$ and $KK(A, \mathcal q(\mathcal k B))$ are not isomorphic in general.

Keywords:extension, Kasparov product, $KK$-group

22. CMB 2011 (vol 56 pp. 306)

Pérez, Juan de Dios; Suh, Young Jin
Real Hypersurfaces in Complex Projective Space Whose Structure Jacobi Operator is Lie $\mathbb{D}$-parallel
We prove the non-existence of real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\mathbb{D}$-parallel and satisfies a further condition.

Keywords:complex projective space, real hypersurface, structure Jacobi operator
Categories:53C15, 53C40

23. CMB 2011 (vol 55 pp. 783)

Motallebi, M. R.; Saiflu, H.
Products and Direct Sums in Locally Convex Cones
In this paper we define lower, upper, and symmetric completeness and discuss closure of the sets in product and direct sums. In particular, we introduce suitable bases for these topologies, which leads us to investigate completeness of the direct sum and its components. Some results obtained about $X$-topologies and polars of the neighborhoods.

Keywords:product and direct sum, duality, locally convex cone
Categories:20K25, 46A30, 46A20

24. CMB 2011 (vol 56 pp. 203)

Tall, Franklin D.
Productively Lindelöf Spaces May All Be $D$
We give easy proofs that (a) the Continuum Hypothesis implies that if the product of $X$ with every Lindelöf space is Lindelöf, then $X$ is a $D$-space, and (b) Borel's Conjecture implies every Rothberger space is Hurewicz.

Keywords:productively Lindelöf, $D$-space, projectively $\sigma$-compact, Menger, Hurewicz
Categories:54D20, 54B10, 54D55, 54A20, 03F50

25. CMB 2011 (vol 56 pp. 136)

Munteanu, Radu-Bogdan
On Constructing Ergodic Hyperfinite Equivalence Relations of Non-Product Type
Product type equivalence relations are hyperfinite measured equivalence relations, which, up to orbit equivalence, are generated by product type odometer actions. We give a concrete example of a hyperfinite equivalence relation of non-product type, which is the tail equivalence on a Bratteli diagram. In order to show that the equivalence relation constructed is not of product type we will use a criterion called property A. This property, introduced by Krieger for non-singular transformations, is defined directly for hyperfinite equivalence relations in this paper.

Keywords:property A, hyperfinite equivalence relation, non-product type
Categories:37A20, 37A35, 46L10
   1 2 3    

© Canadian Mathematical Society, 2015 :