1. CMB 2005 (vol 48 pp. 607)
 Park, Efton

Toeplitz Algebras and Extensions of\\Irrational Rotation Algebras
For a given irrational number $\theta$, we define Toeplitz operators with
symbols in the irrational rotation algebra ${\mathcal A}_\theta$,
and we show that the $C^*$algebra $\mathcal T({\mathcal
A}_\theta)$ generated by these Toeplitz operators is an extension
of ${\mathcal A}_\theta$ by the algebra of compact operators. We
then use these extensions to explicitly exhibit generators of the
group $KK^1({\mathcal A}_\theta,\mathbb C)$. We also prove an
index theorem for $\mathcal T({\mathcal A}_\theta)$ that
generalizes the standard index theorem for Toeplitz operators on
the circle.
Keywords:Toeplitz operators, irrational rotation algebras, index theory Categories:47B35, 46L80 

2. CMB 1998 (vol 41 pp. 196)
 Nakazi, Takahiko

BrownHalmos type theorems of weighted Toeplitz operators
The spectra of the Toeplitz operators on the weighted Hardy space
$H^2(Wd\th/2\pi)$ and the Hardy space $H^p(d\th/2\pi)$, and the
singular integral operators on the Lebesgue space $L^2(d\th/2\pi)$
are studied. For example, the theorems of BrownHalmos type and
HartmanWintner type are studied.
Keywords:Toeplitz operator, singular integral, operator, weighted Hardy space, spectrum. Category:47B35 
