1. CMB Online first
 Kurdyka, Krzysztof; Paunescu, Laurentiu

Nuij type pencils of hyperbolic polynomials
Nuij's theorem states that if a polynomial $p\in \mathbb{R}[z]$ is hyperbolic
(i.e. has only real roots) then $p+sp'$ is also hyperbolic for
any
$s\in \mathbb{R}$. We study other perturbations of hyperbolic polynomials
of the form $p_a(z,s): =p(z) +\sum_{k=1}^d a_ks^kp^{(k)}(z)$.
We give a full characterization of those $a= (a_1, \dots,
a_d) \in \mathbb{R}^d$ for which $p_a(z,s)$ is a pencil of hyperbolic
polynomials.
We give also a full characterization of those $a= (a_1, \dots,
a_d) \in \mathbb{R}^d$ for which the associated families $p_a(z,s)$
admit universal determinantal representations. In fact we show
that all these sequences come from special symmetric Toeplitz
matrices.
Keywords:hyperbolic polynomial, stable polynomial, determinantal representa tion, symmetric Toeplitz matrix Categories:15A15, 30C10, 47A56 

2. CMB Online first
 Liu, Zhongyun; Qin, Xiaorong; Wu, Nianci; Zhang, Yulin

The shifted classical circulant and skew circulant splitting iterative methods for Toeplitz matrices
It is known that every Toeplitz matrix $T$ enjoys a circulant
and skew circulant splitting (denoted by CSCS)
i.e., $T=CS$ with $C$ a circulant matrix and $S$ a skew circulant
matrix. Based on the variant of such a splitting (also referred
to as CSCS), we first develop classical CSCS iterative methods
and then introduce shifted CSCS iterative methods for solving
hermitian positive definite Toeplitz systems in this paper. The
convergence of each method is analyzed. Numerical experiments
show that the classical CSCS iterative methods work slightly
better than the GaussSeidel (GS) iterative methods if the CSCS
is convergent, and that there is always a constant $\alpha$ such
that the shifted CSCS iteration converges much faster than the
GaussSeidel iteration, no matter whether the CSCS itself is
convergent or not.
Keywords:Hermitian positive definite, CSCS splitting, GaussSeidel splitting, iterative method, Toeplitz matrix Categories:15A23, 65F10, 65F15 

3. CMB 2006 (vol 49 pp. 281)
 Ragnarsson, Carl Johan; Suen, Wesley Wai; Wagner, David G.

Correction to a Theorem on Total Positivity
A wellknown theorem states that if $f(z)$ generates a PF$_r$
sequence then $1/f(z)$ generates a PF$_r$ sequence. We give two
counterexamples
which show that this is not true, and give a correct version of the theorem.
In the infinite limit the result is sound: if $f(z)$ generates a PF
sequence then $1/f(z)$ generates a PF sequence.
Keywords:total positivity, Toeplitz matrix, PÃ³lya frequency sequence, skew Schur function Categories:15A48, 15A45, 15A57, 05E05 
