CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Radon-Nikodým property

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB Online first

Ostrovskii, Mikhail I.
Connections between metric characterizations of superreflexivity and the Radon-Nikodým property for dual Banach spaces
Johnson and Schechtman (2009) characterized superreflexivity in terms of finite diamond graphs. The present author characterized the Radon-Nikodým property (RNP) for dual spaces in terms of the infinite diamond. This paper is devoted to further study of relations between metric characterizations of superreflexivity and the RNP for dual spaces. The main result is that finite subsets of any set $M$ whose embeddability characterizes the RNP for dual spaces, characterize superreflexivity. It is also observed that the converse statement does not hold, and that $M=\ell_2$ is a counterexample.

Keywords:Banach space, diamond graph, finite representability, metric characterization, Radon-Nikodým property, superreflexivity
Categories:46B85, 46B07, 46B22

2. CMB 2008 (vol 51 pp. 205)

Duda, Jakub
On Gâteaux Differentiability of Pointwise Lipschitz Mappings
We prove that for every function $f\from X\to Y$, where $X$ is a separable Banach space and $Y$ is a Banach space with RNP, there exists a set $A\in\tilde\mcA$ such that $f$ is G\^ateaux differentiable at all $x\in S(f)\setminus A$, where $S(f)$ is the set of points where $f$ is pointwise-Lipschitz. This improves a result of Bongiorno. As a corollary, we obtain that every $K$-monotone function on a separable Banach space is Hadamard differentiable outside of a set belonging to $\tilde\mcC$; this improves a result due to Borwein and Wang. Another corollary is that if $X$ is Asplund, $f\from X\to\R$ cone monotone, $g\from X\to\R$ continuous convex, then there exists a point in $X$, where $f$ is Hadamard differentiable and $g$ is Fr\'echet differentiable.

Keywords:Gâteaux differentiable function, Radon-Nikodým property, differentiability of Lipschitz functions, pointwise-Lipschitz functions, cone mononotone functions
Categories:46G05, 46T20

© Canadian Mathematical Society, 2014 : https://cms.math.ca/