CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Logarithm

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Miranda-Neto, Cleto Brasileiro
A module-theoretic characterization of algebraic hypersurfaces
In this note we prove the following surprising characterization: if $X\subset {\mathbb A}^n$ is an (embedded, non-empty, proper) algebraic variety defined over a field $k$ of characteristic zero, then $X$ is a hypersurface if and only if the module $T_{{\mathcal O}_{{\mathbb A}^n}/k}(X)$ of logarithmic vector fields of $X$ is a reflexive ${\mathcal O}_{{\mathbb A}^n}$-module. As a consequence of this result, we derive that if $T_{{\mathcal O}_{{\mathbb A}^n}/k}(X)$ is a free ${\mathcal O}_{{\mathbb A}^n}$-module, which is shown to be equivalent to the freeness of the $t$th exterior power of $T_{{\mathcal O}_{{\mathbb A}^n}/k}(X)$ for some (in fact, any) $t\leq n$, then necessarily $X$ is a Saito free divisor.

Keywords:hypersurface, logarithmic vector field, logarithmic derivation, free divisor
Categories:14J70, 13N15, 32S22, 13C05, 13C10, 14N20, , , , , 14C20, 32M25

2. CMB 2016 (vol 60 pp. 184)

Pathak, Siddhi
On a Conjecture of Livingston
In an attempt to resolve a folklore conjecture of Erdös regarding the non-vanishing at $s=1$ of the $L$-series attached to a periodic arithmetical function with period $q$ and values in $\{ -1, 1\} $, Livingston conjectured the $\bar{\mathbb{Q}}$ - linear independence of logarithms of certain algebraic numbers. In this paper, we disprove Livingston's conjecture for composite $q \geq 4$, highlighting that a new approach is required to settle Erdös's conjecture. We also prove that the conjecture is true for prime $q \geq 3$, and indicate that more ingredients will be needed to settle Erdös's conjecture for prime $q$.

Keywords:non-vanishing of L-series, linear independence of logarithms of algebraic numbers
Categories:11J86, 11J72

3. CMB 2005 (vol 48 pp. 473)

Zeron, E. S.
Logarithms and the Topology of the Complement of a Hypersurface
This paper is devoted to analysing the relation between the logarithm of a non-constant holomorphic polynomial $Q(z)$ and the topology of the complement of the hypersurface defined by $Q(z)=0$.

Keywords:Logarithm, homology groups and periods
Categories:32Q55, 14F45

© Canadian Mathematical Society, 2017 : https://cms.math.ca/