1. CMB 2016 (vol 59 pp. 417)
 Song, Hongxue; Chen, Caisheng; Yan, Qinglun

Existence of Multiple Solutions for a $p$Laplacian System in $\textbf{R}^{N}$ with Signchanging Weight Functions
In this paper, we consider the quasilinear elliptic
problem
\[
\left\{
\begin{aligned}
&
M
\left(\int_{\mathbb{R}^{N}}x^{ap}\nabla u^{p}dx
\right){\rm
div}
\left(x^{ap}\nabla u^{p2}\nabla u
\right)
\\
&
\qquad=\frac{\alpha}{\alpha+\beta}H(x)u^{\alpha2}uv^{\beta}+\lambda
h_{1}(x)u^{q2}u,
\\
&
M
\left(\int_{\mathbb{R}^{N}}x^{ap}\nabla v^{p}dx
\right){\rm
div}
\left(x^{ap}\nabla v^{p2}\nabla v
\right)
\\
&
\qquad=\frac{\beta}{\alpha+\beta}H(x)v^{\beta2}vu^{\alpha}+\mu
h_{2}(x)v^{q2}v,
\\
&u(x)\gt 0,\quad v(x)\gt 0, \quad x\in \mathbb{R}^{N}
\end{aligned}
\right.
\]
where $\lambda, \mu\gt 0$, $1\lt p\lt N$,
$1\lt q\lt p\lt p(\tau+1)\lt \alpha+\beta\lt p^{*}=\frac{Np}{Np}$, $0\leq
a\lt \frac{Np}{p}$, $a\leq b\lt a+1$, $d=a+1b\gt 0$, $M(s)=k+l s^{\tau}$,
$k\gt 0$, $l, \tau\geq0$ and the weight $H(x), h_{1}(x), h_{2}(x)$
are
continuous functions which change sign in $\mathbb{R}^{N}$. We
will prove that the problem has at least two positive solutions
by
using the Nehari manifold and the fibering maps associated with
the Euler functional for this problem.
Keywords:Nehari manifold, quasilinear elliptic system, $p$Laplacian operator, concave and convex nonlinearities Category:35J66 

2. CMB 2016 (vol 59 pp. 508)
 De Nicola, Antonio; Yudin, Ivan

Generalized Goldberg Formula
In this paper we prove a useful formula for the graded commutator
of the Hodge
codifferential with the left wedge multiplication by a fixed
$p$form acting on
the de Rham algebra of a Riemannian manifold. Our formula generalizes
a formula
stated by Samuel I. Goldberg for the case of 1forms. As first
examples of
application we obtain new identities on locally conformally KÃ¤hler
manifolds
and quasiSasakian manifolds. Moreover, we prove that under suitable
conditions
a certain subalgebra of differential forms in a compact manifold
is quasiisomorphic as a CDGA to the full de Rham algebra.
Keywords:graded commutator, Hodge codifferential, Hodge laplacian, de Rham cohomology, locally conformal Kaehler manifold, quasiSasakian manifold Categories:53C25, 53D35 

3. CMB 2012 (vol 57 pp. 12)
4. CMB 2011 (vol 56 pp. 3)
 Aïssiou, Tayeb

Semiclassical Limits of Eigenfunctions on Flat $n$Dimensional Tori
We provide a proof of a conjecture by Jakobson, Nadirashvili, and
Toth stating
that on an $n$dimensional flat torus $\mathbb T^{n}$, and the Fourier transform
of squares of the eigenfunctions $\varphi_\lambda^2$ of the Laplacian have
uniform $l^n$ bounds that do not depend on the eigenvalue $\lambda$. The proof
is a generalization of an argument by Jakobson, et al. for the
lower dimensional cases. These results imply uniform bounds for semiclassical
limits on $\mathbb T^{n+2}$. We also prove a geometric lemma that bounds the number of
codimensionone simplices satisfying a certain restriction on an
$n$dimensional sphere $S^n(\lambda)$ of radius $\sqrt{\lambda}$, and we use it in
the proof.
Keywords:semiclassical limits, eigenfunctions of Laplacian on a torus, quantum limits Categories:58G25, 81Q50, 35P20, 42B05 

5. CMB 2008 (vol 51 pp. 217)
 Filippakis, Michael E.; Papageorgiou, Nikolaos S.

A Multivalued Nonlinear System with the Vector $p$Laplacian on the SemiInfinity Interval
We study a second order nonlinear system driven by the vector
$p$Laplacian, with a multivalued nonlinearity and defined on
the positive time semiaxis $\mathbb{R}_+.$ Using degree
theoretic techniques we solve an auxiliary mixed boundary value
problem defined on the finite interval $[0,n]$ and then via a
diagonalization method we produce a solution for the original
infinite timehorizon system.
Keywords:semiinfinity interval, vector $p$Laplacian, multivalued nonlinear, fixed point index, Hartman condition, completely continuous map Category:34A60 

6. CMB 2007 (vol 50 pp. 356)
 Filippakis, Michael E.; Papageorgiou, Nikolaos S.

Existence of Positive Solutions for Nonlinear Noncoercive Hemivariational Inequalities
In this paper we investigate the existence of positive solutions
for nonlinear elliptic problems driven by the $p$Laplacian with a
nonsmooth potential (hemivariational inequality). Under asymptotic
conditions that make the Euler functional indefinite and
incorporate in our framework the asymptotically linear problems,
using a variational approach based on nonsmooth critical point
theory, we obtain positive smooth solutions. Our analysis also
leads naturally to multiplicity results.
Keywords:$p$Laplacian, locally Lipschitz potential, nonsmooth critical point theory, principal eigenvalue, positive solutions, nonsmooth Mountain Pass Theorem Categories:35J20, 35J60, 35J85 

7. CMB 2006 (vol 49 pp. 358)
 Khalil, Abdelouahed El; Manouni, Said El; Ouanan, Mohammed

On the Principal Eigencurve of the $p$Laplacian: Stability Phenomena
We show that each point of the principal eigencurve of the
nonlinear problem
$$
\Delta_{p}u\lambda m(x)u^{p2}u=\muu^{p2}u \quad
\text{in } \Omega,
$$
is stable (continuous) with respect to the exponent $p$ varying in
$(1,\infty)$; we also prove some convergence results
of the principal eigenfunctions corresponding.
Keywords:$p$Laplacian with indefinite weight, principal eigencurve, principal eigenvalue, principal eigenfunction, stability Categories:35P30, 35P60, 35J70 

8. CMB 2000 (vol 43 pp. 51)
 Edward, Julian

Eigenfunction Decay For the Neumann Laplacian on HornLike Domains
The growth properties at infinity for eigenfunctions corresponding to
embedded eigenvalues of the Neumann Laplacian on hornlike domains
are studied. For domains that pinch at polynomial rate, it is shown
that the eigenfunctions vanish at infinity faster than the reciprocal
of any polynomial. For a class of domains that pinch at an exponential
rate, weaker, $L^2$ bounds are proven. A corollary is that eigenvalues
can accumulate only at zero or infinity.
Keywords:Neumann Laplacian, hornlike domain, spectrum Categories:35P25, 58G25 
