CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Heinz inequality

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 1999 (vol 42 pp. 87)

Kittaneh, Fuad
Some norm inequalities for operators
Let $A_i$, $B_i$ and $X_i$ $(i=1, 2, \dots, n)$ be operators on a separable Hilbert space. It is shown that if $f$ and $g$ are nonnegative continuous functions on $[0,\infty)$ which satisfy the relation $f(t)g(t) =t$ for all $t$ in $[0,\infty)$, then $$ \Biglvert \,\Bigl|\sum^n_{i=1} A^*_i X_i B_i \Bigr|^r \,\Bigrvert^2 \leq \Biglvert \Bigl( \sum^n_{i=1} A^*_i f (|X^*_i|)^2 A_i \Bigr)^r \Bigrvert \, \Biglvert \Bigl( \sum^n_{i=1} B^*_i g (|X_i|)^2 B_i \Bigr)^r \Bigrvert $$ for every $r>0$ and for every unitarily invariant norm. This result improves some known Cauchy-Schwarz type inequalities. Norm inequalities related to the arithmetic-geometric mean inequality and the classical Heinz inequalities are also obtained.

Keywords:Unitarily invariant norm, positive operator, arithmetic-geometric mean inequality, Cauchy-Schwarz inequality, Heinz inequality
Categories:47A30, 47B10, 47B15, 47B20

© Canadian Mathematical Society, 2014 : https://cms.math.ca/