Expand all Collapse all  Results 1  11 of 11 
1. CMB Online first
Secondorder Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators 
Secondorder Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators Let $A:=(\nablai\vec{a})\cdot(\nablai\vec{a})+V$ be a
magnetic SchrÃ¶dinger operator on $\mathbb{R}^n$,
where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$
and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse
HÃ¶lder conditions.
Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that
$\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function,
$\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$
(the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index
$I(\varphi)\in(0,1]$. In this article, the authors prove that
secondorder Riesz transforms $VA^{1}$ and
$(\nablai\vec{a})^2A^{1}$ are bounded from the
MusielakOrliczHardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$,
to the MusielakOrlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors
establish the boundedness of $VA^{1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some
maximal inequalities associated with $A$ in the scale of $H_{\varphi,
A}(\mathbb{R}^n)$ are obtained.
Keywords:MusielakOrliczHardy space, magnetic SchrÃ¶dinger operator, atom, secondorder Riesz transform, maximal inequality Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30 
2. CMB 2011 (vol 56 pp. 229)
CesÃ ro Operators on the Hardy Spaces of the HalfPlane In this article we study the CesÃ ro
operator
$$
\mathcal{C}(f)(z)=\frac{1}{z}\int_{0}^{z}f(\zeta)\,d\zeta,
$$
and its companion operator $\mathcal{T}$ on Hardy spaces of the
upper half plane. We identify $\mathcal{C}$ and $\mathcal{T}$ as
resolvents for appropriate semigroups of composition operators and we
find the norm and the spectrum in each case. The relation of
$\mathcal{C}$ and $\mathcal{T}$ with the corresponding Ces\`{a}ro
operators on Lebesgue spaces $L^p(\mathbb R)$ of the boundary line is also
discussed.
Keywords:CesÃ ro operators, Hardy spaces, semigroups, composition operators Categories:47B38, 30H10, 47D03 
3. CMB 2011 (vol 55 pp. 303)
Atomic Decomposition and Boundedness of Operators on Weighted Hardy Spaces In this article, we establish a new atomic decomposition for $f\in L^2_w\cap H^p_w$,
where the decomposition converges in $L^2_w$norm rather than in the distribution sense.
As applications of this decomposition, assuming that $T$ is a linear
operator bounded on $L^2_w$ and $0

4. CMB 2010 (vol 54 pp. 159)
Hardy Inequalities on the Real Line
We prove that some inequalities, which are considered to be
generalizations of Hardy's inequality on the circle,
can be modified and proved to be true for functions integrable on the real line.
In fact we would like to show that some constructions that were
used to prove the Littlewood conjecture can be used similarly to
produce real Hardytype inequalities.
This discussion will lead to many questions concerning the
relationship between Hardytype inequalities on the circle and
those on the real line.
Keywords:Hardy's inequality, inequalities including the Fourier transform and Hardy spaces Categories:42A05, 42A99 
5. CMB 2009 (vol 52 pp. 521)
The Parabolic LittlewoodPaley Operator with Hardy Space Kernels In this paper, we give the $L^p$ boundedness for
a class of parabolic LittlewoodPaley $g$function with its kernel
function $\Omega$ is in the Hardy space $H^1(S^{n1})$.
Keywords:parabolic LittlewoodPaley operator, Hardy space, rough kernel Categories:42B20, 42B25 
6. CMB 2006 (vol 49 pp. 381)
On the Membership in Bergman Spaces of the Derivative of a Blaschke Product With Zeros in a Stolz Domain 
On the Membership in Bergman Spaces of the Derivative of a Blaschke Product With Zeros in a Stolz Domain It is known that the derivative of
a Blaschke product whose zero sequence lies in a Stolz angle
belongs to all the Bergman spaces $A^p$ with $0
1$). As a consequence, we prove that there exists a Blaschke product $B$ with zeros on a radius such that $B'\notin A^{3/2}$. Keywords:Blaschke products, Hardy spaces, Bergman spaces Categories:30D50, 30D55, 32A36 
7. CMB 2005 (vol 48 pp. 370)
Trigonometric Multipliers on $H_{2\pi}$ In this paper we consider multipliers on the real Hardy space
$H_{2\pi}$. It is known that the Marcinkiewicz and the
H\"ormanderMihlin conditions are sufficient for the corresponding
trigonometric multiplier to be bounded on $L_{2\pi}^p$, $1

8. CMB 1999 (vol 42 pp. 97)
On Analytic Functions of Bergman $\BMO$ in the Ball Let $B = B_n$ be the open unit ball of $\bbd C^n$ with
volume measure $\nu$, $U = B_1$ and ${\cal B}$ be the Bloch space on
$U$. ${\cal A}^{2, \alpha} (B)$, $1 \leq \alpha < \infty$, is defined
as the set of holomorphic $f\colon B \rightarrow \bbd C$ for which
$$
\int_B \vert f(z) \vert^2 \left( \frac 1{\vert z\vert}
\log \frac 1{1  \vert z\vert } \right)^{\alpha}
\frac {d\nu (z)}{1\vert z\vert} < \infty
$$
if $0 < \alpha <\infty$ and ${\cal A}^{2, 1} (B) = H^2(B)$, the Hardy
space. Our objective of this note is to characterize, in terms of
the Bergman distance, those holomorphic $f\colon B \rightarrow U$ for
which the composition operator $C_f \colon {\cal B} \rightarrow
{\cal A}^{2, \alpha}(B)$ defined by $C_f (g) = g\circ f$,
$g \in {\cal B}$, is bounded. Our result has a corollary that
characterize the set of analytic functions of bounded mean
oscillation with respect to the Bergman metric.
Keywords:Bergman distance, \BMOA$, Hardy space, Bloch function Category:32A37 
9. CMB 1998 (vol 41 pp. 404)
$L^p$boundedness of a singular integral operator Let $b(t)$ be an $L^\infty$ function on $\bR$, $\Omega (\,y')$ be
an $H^1$ function on the unit sphere satisfying the mean zero
property (1) and $Q_m(t)$ be a real polynomial on $\bR$ of degree
$m$ satisfying $Q_m(0)=0$. We prove that the singular integral
operator
$$
T_{Q_m,b} (\,f) (x)=p.v. \int_\bR^n b(y) \Omega(\,y) y^{n} f
\left( xQ_m (y) y' \right) \,dy
$$
is bounded in $L^p (\bR^n)$ for $1

10. CMB 1998 (vol 41 pp. 196)
BrownHalmos type theorems of weighted Toeplitz operators The spectra of the Toeplitz operators on the weighted Hardy space
$H^2(Wd\th/2\pi)$ and the Hardy space $H^p(d\th/2\pi)$, and the
singular integral operators on the Lebesgue space $L^2(d\th/2\pi)$
are studied. For example, the theorems of BrownHalmos type and
HartmanWintner type are studied.
Keywords:Toeplitz operator, singular integral, operator, weighted Hardy space, spectrum. Category:47B35 
11. CMB 1997 (vol 40 pp. 475)
Coefficient multipliers of Bergman spaces $A^p$, II We show that the multiplier space $(A^1,X)=\{g:M_\infty(r,g'')
=O(1r)^{1}\}$, where $X$ is $\BMOA$, $\VMOA$, $B$, $B_0$ or disk algebra $A$.
We give the multipliers from $A^1$ to $A^q(H^q)(1\le q\le \infty)$, we
also give the multipliers from $l^p(1\le p\le 2), C_0, \BMOA$, and
$H^p(2\le p<\infty)$ into $A^q(1\le q\le 2)$.
Keywords:Multiplier, Bergman space, Hardy space, Bloch space, $\BMOA$. Categories:30H05, 30B10 