CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Functional equations

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 56 pp. 218)

Yang, Dilian
Functional Equations and Fourier Analysis
By exploring the relations among functional equations, harmonic analysis and representation theory, we give a unified and very accessible approach to solve three important functional equations - the d'Alembert equation, the Wilson equation, and the d'Alembert long equation - on compact groups.

Keywords:functional equations, Fourier analysis, representation of compact groups
Categories:39B52, 22C05, 43A30

2. CMB 2011 (vol 55 pp. 60)

Coons, Michael
Extension of Some Theorems of W. Schwarz
In this paper, we prove that a non--zero power series $F(z)\in\mathbb{C} [\mkern-3mu[ z]\mkern-3mu] $ satisfying $$F(z^d)=F(z)+\frac{A(z)}{B(z)},$$ where $d\geq 2$, $A(z),B(z)\in\mathbb{C}[z]$ with $A(z)\neq 0$ and $\deg A(z),\deg B(z)
Keywords:functional equations, transcendence, power series
Categories:11B37, 11J81

3. CMB 2005 (vol 48 pp. 505)

Bouikhalene, Belaid
On the Generalized d'Alembert's and Wilson's Functional Equations on a Compact group
Let $G$ be a compact group. Let $\sigma$ be a continuous involution of $G$. In this paper, we are concerned by the following functional equation $$\int_{G}f(xtyt^{-1})\,dt+\int_{G}f(xt\sigma(y)t^{-1})\,dt=2g(x)h(y), \quad x, y \in G,$$ where $f, g, h \colonG \mapsto \mathbb{C}$, to be determined, are complex continuous functions on $G$ such that $f$ is central. This equation generalizes d'Alembert's and Wilson's functional equations. We show that the solutions are expressed by means of characters of irreducible, continuous and unitary representations of the group $G$.

Keywords:Compact groups, Functional equations, Central functions, Lie, groups, Invariant differential operators.
Categories:39B32, 39B42, 22D10, 22D12, 22D15

© Canadian Mathematical Society, 2014 : https://cms.math.ca/