CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Fourier algebra

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB Online first

Shravan Kumar, N.
Invariant means on a class of von Neumann Algebras related to Ultraspherical Hypergroups II
Let $K$ be an ultraspherical hypergroup associated to a locally compact group $G$ and a spherical projector $\pi$ and let $VN(K)$ denote the dual of the Fourier algebra $A(K)$ corresponding to $K.$ In this note, we show that the set of invariant means on $VN(K)$ is singleton if and only if $K$ is discrete. Here $K$ need not be second countable. We also study invariant means on the dual of the Fourier algebra $A_0(K),$ the closure of $A(K)$ in the $cb$-multiplier norm. Finally, we consider generalized translations and generalized invariant means.

Keywords:ultraspherical hypergroup, Fourier algebra, Fourier-Stieltjes algebra, invariant mean, generalized translation, generalized invariant mean
Categories:43A62, 46J10, 43A30, 20N20

2. CMB 2011 (vol 54 pp. 654)

Forrest, Brian E.; Runde, Volker
Norm One Idempotent $cb$-Multipliers with Applications to the Fourier Algebra in the $cb$-Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$-amenable in the sense of B. E. Johnson. (We can even slightly relax the norm bounds.)

Keywords:amenability, bounded approximate identity, $cb$-multiplier norm, Fourier algebra, norm one idempotent
Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25

© Canadian Mathematical Society, 2016 : https://cms.math.ca/