CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Falkner-Skan equation

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2008 (vol 51 pp. 386)

Lan, K. Q.; Yang, G. C.
Positive Solutions of the Falkner--Skan Equation Arising in the Boundary Layer Theory
The well-known Falkner--Skan equation is one of the most important equations in laminar boundary layer theory and is used to describe the steady two-dimensional flow of a slightly viscous incompressible fluid past wedge shaped bodies of angles related to $\lambda\pi/2$, where $\lambda\in \mathbb R$ is a parameter involved in the equation. It is known that there exists $\lambda^{*}<0$ such that the equation with suitable boundary conditions has at least one positive solution for each $\lambda\ge \lambda^{*}$ and has no positive solutions for $\lambda<\lambda^{*}$. The known numerical result shows $\lambda^{*}=-0.1988$. In this paper, $\lambda^{*}\in [-0.4,-0.12]$ is proved analytically by establishing a singular integral equation which is equivalent to the Falkner--Skan equation. The equivalence result provides new techniques to study properties and existence of solutions of the Falkner--Skan equation.

Keywords:Falkner-Skan equation, boundary layer problems, singular integral equation, positive solutions
Categories:34B16, 34B18, 34B40, 76D10

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/