1. CMB 2014 (vol 57 pp. 495)
 Fujita, Yasutsugu; Miyazaki, Takafumi

JeÅmanowicz' Conjecture with Congruence Relations. II
Let $a,b$ and $c$ be primitive Pythagorean numbers such that
$a^{2}+b^{2}=c^{2}$ with $b$ even.
In this paper, we show that if $b_0 \equiv \epsilon \pmod{a}$
with $\epsilon \in \{\pm1\}$
for certain positive divisors $b_0$ of $b$,
then the Diophantine equation $a^{x}+b^{y}=c^z$ has only the
positive solution $(x,y,z)=(2,2,2)$.
Keywords:exponential Diophantine equations, Pythagorean triples, Pell equations Categories:11D61, 11D09 

2. CMB 2006 (vol 49 pp. 560)
 Luijk, Ronald van

A K3 Surface Associated With Certain Integral Matrices Having Integral Eigenvalues
In this article we will show that there are infinitely many
symmetric, integral $3 \times 3$ matrices, with zeros on the
diagonal, whose eigenvalues are all integral. We will do this by
proving that the rational points on a certain nonKummer, singular
K3 surface
are dense. We will also compute the entire NÃ©ronSeveri group of
this surface and find all low degree curves on it.
Keywords:symmetric matrices, eigenvalues, elliptic surfaces, K3 surfaces, NÃ©ronSeveri group, rational curves, Diophantine equations, arithmetic geometry, algebraic geometry, number theory Categories:14G05, 14J28, 11D41 

3. CMB 2005 (vol 48 pp. 121)
4. CMB 2002 (vol 45 pp. 428)
 Mollin, R. A.

Criteria for Simultaneous Solutions of $X^2  DY^2 = c$ and $x^2  Dy^2 = c$
The purpose of this article is to provide criteria for the
simultaneous solvability of the Diophantine equations $X^2  DY^2 =
c$ and $x^2  Dy^2 = c$ when $c \in \mathbb{Z}$, and $D \in
\mathbb{N}$ is not a perfect square. This continues work in
\cite{me}\cite{alfnme}.
Keywords:continued fractions, Diophantine equations, fundamental units, simultaneous solutions Categories:11A55, 11R11, 11D09 

5. CMB 2002 (vol 45 pp. 247)
 Kihel, O.; Levesque, C.

On a Few Diophantine Equations Related to Fermat's Last Theorem
We combine the deep methods of Frey, Ribet, Serre and Wiles with some
results of Darmon, Merel and Poonen to solve certain explicit
diophantine equations. In particular, we prove that the area of a
primitive Pythagorean triangle is never a perfect power, and that each
of the equations $X^4  4Y^4 = Z^p$, $X^4 + 4Y^p = Z^2$ has no
nontrivial solution. Proofs are short and rest heavily on results
whose proofs required Wiles' deep machinery.
Keywords:Diophantine equations Category:11D41 
