CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Dehn surgery

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB Online first

 
Left-orderable fundamental group and Dehn surgery on the knot $5_2$
We show that the resulting manifold by $r$-surgery on the knot $5_2$, which is the two-bridge knot corresponding to the rational number $3/7$, has left-orderable fundamental group if the slope $r$ satisfies $0\le r \le 4$.

Keywords:left-ordering, Dehn surgery
Categories:57M25, 06F15

2. CMB Online first

 
Left-orderable fundamental group and Dehn surgery on the knot $5_2$
We show that the resulting manifold by $r$-surgery on the knot $5_2$, which is the two-bridge knot corresponding to the rational number $3/7$, has left-orderable fundamental group if the slope $r$ satisfies $0\le r \le 4$.

Keywords:left-ordering, Dehn surgery
Categories:57M25, 06F15

3. CMB 2013 (vol 57 pp. 310)

Hakamata, Ryoto; Teragaito, Masakazu
Left-orderable Fundamental Group and Dehn Surgery on the Knot $5_2$
We show that the resulting manifold by $r$-surgery on the knot $5_2$, which is the two-bridge knot corresponding to the rational number $3/7$, has left-orderable fundamental group if the slope $r$ satisfies $0\le r \le 4$.

Keywords:left-ordering, Dehn surgery
Categories:57M25, 06F15

4. CMB 2012 (vol 56 pp. 850)

Teragaito, Masakazu
Left-orderability and Exceptional Dehn Surgery on Twist Knots
We show that any exceptional non-trivial Dehn surgery on a twist knot, except the trefoil, yields a $3$-manifold whose fundamental group is left-orderable. This is a generalization of a result of Clay, Lidman and Watson, and also gives a new supporting evidence for a conjecture of Boyer, Gordon and Watson.

Keywords:left-ordering, twist knot, Dehn surgery
Categories:57M25, 06F15

5. CMB 2006 (vol 49 pp. 624)

Teragaito, Masakazu
On Non-Integral Dehn Surgeries Creating Non-Orientable Surfaces
For a non-trivial knot in the $3$-sphere, only integral Dehn surgery can create a closed $3$-manifold containing a projective plane. If we restrict ourselves to hyperbolic knots, the corresponding claim for a Klein bottle is still true. In contrast to these, we show that non-integral surgery on a hyperbolic knot can create a closed non-orientable surface of any genus greater than two.

Keywords:knot, Dehn surgery, non-orientable surface
Category:57M25

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/