CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Coxeter groups

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2009 (vol 52 pp. 435)

Monson, B.; Schulte, Egon
Modular Reduction in Abstract Polytopes
The paper studies modular reduction techniques for abstract regular and chiral polytopes, with two purposes in mind:\ first, to survey the literature about modular reduction in polytopes; and second, to apply modular reduction, with moduli given by primes in $\mathbb{Z}[\tau]$ (with $\tau$ the golden ratio), to construct new regular $4$-polytopes of hyperbolic types $\{3,5,3\}$ and $\{5,3,5\}$ with automorphism groups given by finite orthogonal groups.

Keywords:abstract polytopes, regular and chiral, Coxeter groups, modular reduction
Categories:51M20, 20F55

2. CMB 2002 (vol 45 pp. 231)

Hironaka, Eriko
Erratum:~~The Lehmer Polynomial and Pretzel Links
Erratum to {\it The Lehmer Polynomial and Pretzel Links}, Canad. J. Math. {\bf 44}(2001), 440--451.

Keywords:Alexander polynomial, pretzel knot, Mahler measure, Salem number, Coxeter groups
Categories:57M05, 57M25, 11R04, 11R27

3. CMB 2001 (vol 44 pp. 440)

Hironaka, Eriko
The Lehmer Polynomial and Pretzel Links
In this paper we find a formula for the Alexander polynomial $\Delta_{p_1,\dots,p_k} (x)$ of pretzel knots and links with $(p_1,\dots,p_k, \nega 1)$ twists, where $k$ is odd and $p_1,\dots,p_k$ are positive integers. The polynomial $\Delta_{2,3,7} (x)$ is the well-known Lehmer polynomial, which is conjectured to have the smallest Mahler measure among all monic integer polynomials. We confirm that $\Delta_{2,3,7} (x)$ has the smallest Mahler measure among the polynomials arising as $\Delta_{p_1,\dots,p_k} (x)$.

Keywords:Alexander polynomial, pretzel knot, Mahler measure, Salem number, Coxeter groups
Categories:57M05, 57M25, 11R04, 11R27

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/