Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword Central functions

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2005 (vol 48 pp. 505)

Bouikhalene, Belaid
On the Generalized d'Alembert's and Wilson's Functional Equations on a Compact group
Let $G$ be a compact group. Let $\sigma$ be a continuous involution of $G$. In this paper, we are concerned by the following functional equation $$\int_{G}f(xtyt^{-1})\,dt+\int_{G}f(xt\sigma(y)t^{-1})\,dt=2g(x)h(y), \quad x, y \in G,$$ where $f, g, h \colonG \mapsto \mathbb{C}$, to be determined, are complex continuous functions on $G$ such that $f$ is central. This equation generalizes d'Alembert's and Wilson's functional equations. We show that the solutions are expressed by means of characters of irreducible, continuous and unitary representations of the group $G$.

Keywords:Compact groups, Functional equations, Central functions, Lie, groups, Invariant differential operators.
Categories:39B32, 39B42, 22D10, 22D12, 22D15

© Canadian Mathematical Society, 2014 :