1. CMB Online first
 Gauthier, Paul M; Sharifi, Fatemeh

Luzintype holomorphic approximation on closed subsets of open Riemann surfaces
It is known that if $E$ is a closed subset of an open Riemann
surface $R$ and $f$ is a holomorphic function on a neighbourhood
of $E,$ then it is ``usually" not possible to approximate $f$
uniformly by functions holomorphic on all of $R.$ We show, however,
that for every open Riemann surface $R$ and every closed subset
$E\subset R,$ there is closed subset $F\subset E,$ which approximates
$E$ extremely well, such that every function holomorphic on $F$
can be approximated much better than uniformly by functions holomorphic
on $R$.
Keywords:Carleman approximation, tangential approximation, Myrberg surface Categories:30E15, 30F99 

2. CMB 2015 (vol 59 pp. 87)
 Gauthier, Paul M.; Kienzle, Julie

Approximation of a Function and its Derivatives by Entire Functions
A simple proof is given for the fact that, for $m$ a nonnegative
integer, a function $f\in C^{(m)}(\mathbb{R}),$ and an arbitrary positive
continuous function $\epsilon,$ there is an entire function $g,$
such that $g^{(i)}(x)f^{(i)}(x)\lt \epsilon(x),$ for all $x\in\mathbb{R}$
and for each $i=0,1\dots,m.$ We also consider the situation,
where $\mathbb{R}$ is replaced by an open interval.
Keywords:Carleman theorem Category:30E10 

3. CMB 2002 (vol 45 pp. 80)