1. CMB 2015 (vol 58 pp. 402)
 Tikuisis, Aaron Peter; Toms, Andrew

On the Structure of Cuntz Semigroups in (Possibly) Nonunital C*algebras
We examine the ranks of operators in semifinite $\mathrm{C}^*$algebras
as measured by their densely defined lower semicontinuous traces.
We first prove that a unital simple $\mathrm{C}^*$algebra whose
extreme tracial boundary is nonempty and finite contains positive
operators of every possible rank, independent of the property
of strict comparison. We then turn to nonunital simple algebras
and establish criteria that imply that the Cuntz semigroup is
recovered functorially from the Murrayvon Neumann semigroup
and the space of densely defined lower semicontinuous traces.
Finally, we prove that these criteria are satisfied by notnecessarilyunital
approximately subhomogeneous algebras of slow dimension growth.
Combined with results of the firstnamed author, this shows that
slow dimension growth coincides with $\mathcal Z$stability,
for approximately subhomogeneous algebras.
Keywords:nuclear C*algebras, Cuntz semigroup, dimension functions, stably projectionless C*algebras, approximately subhomogeneous C*algebras, slow dimension growth Categories:46L35, 46L05, 46L80, 47L40, 46L85 

2. CMB 2011 (vol 54 pp. 593)
 Boersema, Jeffrey L.; Ruiz, Efren

Stability of Real $C^*$Algebras
We will give a characterization of stable real $C^*$algebras
analogous to the one given for complex $C^*$algebras by Hjelmborg
and RÃ¸rdam. Using this result, we will prove
that any real $C^*$algebra satisfying the corona factorization
property is stable if and only if its complexification is stable.
Real $C^*$algebras satisfying the corona factorization property
include AFalgebras and purely infinite $C^*$algebras. We will also
provide an example of a simple unstable $C^*$algebra, the
complexification of which is stable.
Keywords:stability, real C*algebras Category:46L05 
