CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Bloch function

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2009 (vol 53 pp. 23)

Chen, Huaihui; Zhang, Minzhu
Boundedness From Below of Multiplication Operators Between $\alpha$-Bloch Spaces
In this paper, the boundedness from below of multiplication operators between $\alpha$-Bloch spaces $\mathcal B^\alpha$, $\alpha\gt 0$, on the unit disk $D$ is studied completely. For a bounded multiplication operator $M_u\colon \mathcal B^\alpha\to\mathcal B^\beta$, defined by $M_uf=uf$ for $f\in\mathcal B^\alpha$, we prove the following result: (i) If $0\lt \beta\lt \alpha$, or $0\lt \alpha\le1$ and $\alpha\lt \beta$, $M_u$ is not bounded below; (ii) if $0\lt \alpha=\beta\le1$, $M_u$ is bounded below if and only if $\liminf_{z\to\partial D}|u(z)|\gt 0$; (iii) if $1\lt \alpha\le\beta$, $M_u$ is bounded below if and only if there exist a $\delta\gt 0$ and a positive $r\lt 1$ such that for every point $z\in D$ there is a point $z'\in D$ with the property $d(z',z)\lt r$ and $(1-|z'|^2)^{\beta-\alpha}|u(z')|\ge\delta$, where $d(\cdot,\cdot)$ denotes the pseudo-distance on $D$.

Keywords:$\alpha$-Bloch function, multiplication operator
Categories:32A18, 30H05

2. CMB 2008 (vol 51 pp. 195)

Chen, Huaihui; Gauthier, Paul
Boundedness from Below of Composition Operators on $\alpha$-Bloch Spaces
We give a necessary and sufficient condition for a composition operator on an $\alpha$-Bloch space with $\alpha\ge 1$ to be bounded below. This extends a known result for the Bloch space due to P. Ghatage, J. Yan, D. Zheng, and H. Chen.

Keywords:Bloch functions, composition operators
Categories:32A18, 30H05

3. CMB 1999 (vol 42 pp. 97)

Kwon, E. G.
On Analytic Functions of Bergman $\BMO$ in the Ball
Let $B = B_n$ be the open unit ball of $\bbd C^n$ with volume measure $\nu$, $U = B_1$ and ${\cal B}$ be the Bloch space on $U$. ${\cal A}^{2, \alpha} (B)$, $1 \leq \alpha < \infty$, is defined as the set of holomorphic $f\colon B \rightarrow \bbd C$ for which $$ \int_B \vert f(z) \vert^2 \left( \frac 1{\vert z\vert} \log \frac 1{1 - \vert z\vert } \right)^{-\alpha} \frac {d\nu (z)}{1-\vert z\vert} < \infty $$ if $0 < \alpha <\infty$ and ${\cal A}^{2, 1} (B) = H^2(B)$, the Hardy space. Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic $f\colon B \rightarrow U$ for which the composition operator $C_f \colon {\cal B} \rightarrow {\cal A}^{2, \alpha}(B)$ defined by $C_f (g) = g\circ f$, $g \in {\cal B}$, is bounded. Our result has a corollary that characterize the set of analytic functions of bounded mean oscillation with respect to the Bergman metric.

Keywords:Bergman distance, \BMOA$, Hardy space, Bloch function
Category:32A37

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/