1. CMB 2011 (vol 55 pp. 146)
 Li, Songxiao; Wulan, Hasi; Zhu, Kehe

A Characterization of Bergman Spaces on the Unit Ball of ${\mathbb C}^n$. II
It has been shown that a holomorphic function $f$ in the unit ball
$\mathbb{B}_n$ of ${\mathbb C}_n$ belongs to the weighted Bergman space $A^p_\alpha$,
$p>n+1+\alpha$, if and only if the function
$f(z)f(w)/1\langle z,w\rangle$ is in $L^p(\mathbb{B}_n\times\mathbb{B}_n,dv_\beta
\times dv_\beta)$, where $\beta=(p+\alphan1)/2$ and $dv_\beta(z)=
(1z^2)^\beta\,dv(z)$. In this paper
we consider the range $0 n+1+\alpha$ is
particularly interesting.
Keywords:Bergman spaces, unit ball, volume measure Category:32A36 

2. CMB 2009 (vol 52 pp. 613)
 Wulan, Hasi; Zhu, Kehe

Lipschitz Type Characterizations for Bergman Spaces
We obtain new characterizations for Bergman spaces with standard
weights in terms of Lipschitz type conditions in the Euclidean,
hyperbolic, and pseudohyperbolic metrics. As a consequence, we
prove optimal embedding theorems when an analytic function
on the unit disk is symmetrically lifted to the bidisk.
Keywords:Bergman spaces, hyperbolic metric, Lipschitz condition Category:32A36 

3. CMB 2006 (vol 49 pp. 381)
4. CMB 1998 (vol 41 pp. 129)