CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Baire category

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Chung, Jaeyoung; Ju, Yumin; Rassias, John
Cubic functional equations on restricted domains of Lebesgue measure zero
Let $X$ be a real normed space, $Y$ a Bancch space and $f:X \to Y$. We prove the Ulam-Hyers stability theorem for the cubic functional equation \begin{align*} f(2x+y)+f(2x-y)-2f(x+y)-2f(x-y)-12f(x)=0 \end{align*} in restricted domains. As an application we consider a measure zero stability problem of the inequality \begin{align*} \|f(2x+y)+f(2x-y)-2f(x+y)-2f(x-y)-12f(x)\|\le \epsilon \end{align*} for all $(x, y)$ in $\Gamma\subset\mathbb R^2$ of Lebesgue measure 0.

Keywords:Baire category theorem, cubic functional equation, first category, Lebesgue measure, Ulam-Hyers stability
Category:39B82

2. CMB 2012 (vol 57 pp. 240)

Bernardes, Nilson C.
Addendum to ``Limit Sets of Typical Homeomorphisms''
Given an integer $n \geq 3$, a metrizable compact topological $n$-manifold $X$ with boundary, and a finite positive Borel measure $\mu$ on $X$, we prove that for the typical homeomorphism $f : X \to X$, it is true that for $\mu$-almost every point $x$ in $X$ the restriction of $f$ (respectively of $f^{-1}$) to the omega limit set $\omega(f,x)$ (respectively to the alpha limit set $\alpha(f,x)$) is topologically conjugate to the universal odometer.

Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets
Categories:37B20, 54H20, 28C15, 54C35, 54E52

3. CMB 2011 (vol 55 pp. 225)

Bernardes, Nilson C.
Limit Sets of Typical Homeomorphisms
Given an integer $n \geq 3$, a metrizable compact topological $n$-manifold $X$ with boundary, and a finite positive Borel measure $\mu$ on $X$, we prove that for the typical homeomorphism $f \colon X \to X$, it is true that for $\mu$-almost every point $x$ in $X$ the limit set $\omega(f,x)$ is a Cantor set of Hausdorff dimension zero, each point of $\omega(f,x)$ has a dense orbit in $\omega(f,x)$, $f$ is non-sensitive at each point of $\omega(f,x)$, and the function $a \to \omega(f,a)$ is continuous at $x$.

Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets
Categories:37B20, 54H20, 28C15, 54C35, 54E52

© Canadian Mathematical Society, 2016 : https://cms.math.ca/