CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Artinian module

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2011 (vol 55 pp. 153)

Mafi, Amir; Saremi, Hero
Artinianness of Certain Graded Local Cohomology Modules
We show that if $R=\bigoplus_{n\in\mathbb{N}_0}R_n$ is a Noetherian homogeneous ring with local base ring $(R_0,\mathfrak{m}_0)$, irrelevant ideal $R_+$, and $M$ a finitely generated graded $R$-module, then $H_{\mathfrak{m}_0R}^j(H_{R_+}^t(M))$ is Artinian for $j=0,1$ where $t=\inf\{i\in{\mathbb{N}_0}: H_{R_+}^i(M)$ is not finitely generated $\}$. Also, we prove that if $\operatorname{cd}(R_+,M)=2$, then for each $i\in\mathbb{N}_0$, $H_{\mathfrak{m}_0R}^i(H_{R_+}^2(M))$ is Artinian if and only if $H_{\mathfrak{m}_0R}^{i+2}(H_{R_+}^1(M))$ is Artinian, where $\operatorname{cd}(R_+,M)$ is the cohomological dimension of $M$ with respect to $R_+$. This improves some results of R. Sazeedeh.

Keywords:graded local cohomology, Artinian modules
Categories:13D45, 13E10

2. CMB 2007 (vol 50 pp. 598)

Lorestani, Keivan Borna; Sahandi, Parviz; Yassemi, Siamak
Artinian Local Cohomology Modules
Let $R$ be a commutative Noetherian ring, $\fa$ an ideal of $R$ and $M$ a finitely generated $R$-module. Let $t$ be a non-negative integer. It is known that if the local cohomology module $\H^i_\fa(M)$ is finitely generated for all $i
Keywords:local cohomology module, Artinian module, reflexive module
Categories:13D45, 13E10, 13C05

© Canadian Mathematical Society, 2014 : https://cms.math.ca/