CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword \BMOA$

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2004 (vol 47 pp. 49)

Lindström, Mikael; Makhmutov, Shamil; Taskinen, Jari
The Essential Norm of a Bloch-to-$Q_p$ Composition Operator
The $Q_p$ spaces coincide with the Bloch space for $p>1$ and are subspaces of $\BMOA$ for $0
Keywords:Bloch space, little Bloch space, $\BMOA$, $\VMOA$, $Q_p$ spaces,, composition operator, compact operator, essential norm
Categories:47B38, 47B10, 46E40, 46E15

2. CMB 1999 (vol 42 pp. 97)

Kwon, E. G.
On Analytic Functions of Bergman $\BMO$ in the Ball
Let $B = B_n$ be the open unit ball of $\bbd C^n$ with volume measure $\nu$, $U = B_1$ and ${\cal B}$ be the Bloch space on $U$. ${\cal A}^{2, \alpha} (B)$, $1 \leq \alpha < \infty$, is defined as the set of holomorphic $f\colon B \rightarrow \bbd C$ for which $$ \int_B \vert f(z) \vert^2 \left( \frac 1{\vert z\vert} \log \frac 1{1 - \vert z\vert } \right)^{-\alpha} \frac {d\nu (z)}{1-\vert z\vert} < \infty $$ if $0 < \alpha <\infty$ and ${\cal A}^{2, 1} (B) = H^2(B)$, the Hardy space. Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic $f\colon B \rightarrow U$ for which the composition operator $C_f \colon {\cal B} \rightarrow {\cal A}^{2, \alpha}(B)$ defined by $C_f (g) = g\circ f$, $g \in {\cal B}$, is bounded. Our result has a corollary that characterize the set of analytic functions of bounded mean oscillation with respect to the Bergman metric.

Keywords:Bergman distance, \BMOA$, Hardy space, Bloch function
Category:32A37

3. CMB 1997 (vol 40 pp. 475)

Lou, Zengjian
Coefficient multipliers of Bergman spaces $A^p$, II
We show that the multiplier space $(A^1,X)=\{g:M_\infty(r,g'') =O(1-r)^{-1}\}$, where $X$ is $\BMOA$, $\VMOA$, $B$, $B_0$ or disk algebra $A$. We give the multipliers from $A^1$ to $A^q(H^q)(1\le q\le \infty)$, we also give the multipliers from $l^p(1\le p\le 2), C_0, \BMOA$, and $H^p(2\le p<\infty)$ into $A^q(1\le q\le 2)$.

Keywords:Multiplier, Bergman space, Hardy space, Bloch space, $\BMOA$.
Categories:30H05, 30B10

© Canadian Mathematical Society, 2014 : https://cms.math.ca/