Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 58D29 ( Moduli problems for topological structures )

  Expand all        Collapse all Results 1 - 1 of 1

1. CJM 2008 (vol 60 pp. 297)

Bini, G.; Goulden, I. P.; Jackson, D. M.
Transitive Factorizations in the Hyperoctahedral Group
The classical Hurwitz enumeration problem has a presentation in terms of transitive factorizations in the symmetric group. This presentation suggests a generalization from type~$A$ to other finite reflection groups and, in particular, to type~$B$. We study this generalization both from a combinatorial and a geometric point of view, with the prospect of providing a means of understanding more of the structure of the moduli spaces of maps with an $\gS_2$-symmetry. The type~$A$ case has been well studied and connects Hurwitz numbers to the moduli space of curves. We conjecture an analogous setting for the type~$B$ case that is studied here.

Categories:05A15, 14H10, 58D29

© Canadian Mathematical Society, 2014 :