Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 54F65 ( Topological characterizations of particular spaces )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM Online first

Martínez-de-la-Vega, Veronica; Mouron, Christopher
Monotone Classes of Dendrites
Continua $X$ and $Y$ are monotone equivalent if there exist monotone onto maps $f:X\longrightarrow Y$ and $g:Y\longrightarrow X$. A continuum $X$ is isolated with respect to monotone maps if every continuum that is monotone equivalent to $X$ must also be homeomorphic to $X$. In this paper we show that a dendrite $X$ is isolated with respect to monotone maps if and only if the set of ramification points of $X$ is finite. In this way we fully characterize the classes of dendrites that are monotone isolated.

Keywords:dendrite, monotone, bqo, antichain
Categories:54F50, 54C10, 06A07, 54F15, 54F65, 03E15

2. CJM 2009 (vol 61 pp. 124)

Dijkstra, Jan J.; Mill, Jan van
Characterizing Complete Erd\H os Space
The space now known as {\em complete Erd\H os space\/} $\cerdos$ was introduced by Paul Erd\H os in 1940 as the closed subspace of the Hilbert space $\ell^2$ consisting of all vectors such that every coordinate is in the convergent sequence $\{0\}\cup\{1/n:n\in\N\}$. In a solution to a problem posed by Lex G. Oversteegen we present simple and useful topological characterizations of $\cerdos$. As an application we determine the class of factors of $\cerdos$. In another application we determine precisely which of the spaces that can be constructed in the Banach spaces $\ell^p$ according to the `Erd\H os method' are homeomorphic to $\cerdos$. A novel application states that if $I$ is a Polishable $F_\sigma$-ideal on $\omega$, then $I$ with the Polish topology is homeomorphic to either $\Z$, the Cantor set $2^\omega$, $\Z\times2^\omega$, or $\cerdos$. This last result answers a question that was asked by Stevo Todor{\v{c}}evi{\'c}.

Keywords:Complete Erd\H os space, Lelek fan, almost zero-dimensional, nowhere zero-dimensional, Polishable ideals, submeasures on $\omega$, $\R$-trees, line-free groups in Banach spaces
Categories:28C10, 46B20, 54F65

© Canadian Mathematical Society, 2015 :