CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 53C40 ( Global submanifolds [See also 53B25] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2013 (vol 66 pp. 400)

Mendonça, Bruno; Tojeiro, Ruy
Umbilical Submanifolds of $\mathbb{S}^n\times \mathbb{R}$
We give a complete classification of umbilical submanifolds of arbitrary dimension and codimension of $\mathbb{S}^n\times \mathbb{R}$, extending the classification of umbilical surfaces in $\mathbb{S}^2\times \mathbb{R}$ by Souam and Toubiana as well as the local description of umbilical hypersurfaces in $\mathbb{S}^n\times \mathbb{R}$ by Van der Veken and Vrancken. We prove that, besides small spheres in a slice, up to isometries of the ambient space they come in a two-parameter family of rotational submanifolds whose substantial codimension is either one or two and whose profile is a curve in a totally geodesic $\mathbb{S}^1\times \mathbb{R}$ or $\mathbb{S}^2\times \mathbb{R}$, respectively, the former case arising in a one-parameter family. All of them are diffeomorphic to a sphere, except for a single element that is diffeomorphic to Euclidean space. We obtain explicit parametrizations of all such submanifolds. We also study more general classes of submanifolds of $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$. In particular, we give a complete description of all submanifolds in those product spaces for which the tangent component of a unit vector field spanning the factor $\mathbb{R}$ is an eigenvector of all shape operators. We show that surfaces with parallel mean curvature vector in $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$ having this property are rotational surfaces, and use this fact to improve some recent results by Alencar, do Carmo, and Tribuzy. We also obtain a Dajczer-type reduction of codimension theorem for submanifolds of $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$.

Keywords:umbilical submanifolds, product spaces $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$
Categories:53B25, 53C40

2. CJM 2009 (vol 61 pp. 641)

Maeda, Sadahiro; Udagawa, Seiichi
Characterization of Parallel Isometric Immersions of Space Forms into Space Forms in the Class of Isotropic Immersions
For an isotropic submanifold $M^n\,(n\geqq3)$ of a space form $\widetilde{M}^{n+p}(c)$ of constant sectional curvature $c$, we show that if the mean curvature vector of $M^n$ is parallel and the sectional curvature $K$ of $M^n$ satisfies some inequality, then the second fundamental form of $M^n$ in $\widetilde{M}^{n+p}$ is parallel and our manifold $M^n$ is a space form.

Keywords:space forms, parallel isometric immersions, isotropic immersions, totally umbilic, Veronese manifolds, sectional curvatures, parallel mean curvature vector
Categories:53C40, 53C42

© Canadian Mathematical Society, 2014 : https://cms.math.ca/