CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 53C30 ( Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15] )

  Expand all        Collapse all Results 1 - 5 of 5

1. CJM 2012 (vol 65 pp. 66)

Deng, Shaoqiang; Hu, Zhiguang
On Flag Curvature of Homogeneous Randers Spaces
In this paper we give an explicit formula for the flag curvature of homogeneous Randers spaces of Douglas type and apply this formula to obtain some interesting results. We first deduce an explicit formula for the flag curvature of an arbitrary left invariant Randers metric on a two-step nilpotent Lie group. Then we obtain a classification of negatively curved homogeneous Randers spaces of Douglas type. This results, in particular, in many examples of homogeneous non-Riemannian Finsler spaces with negative flag curvature. Finally, we prove a rigidity result that a homogeneous Randers space of Berwald type whose flag curvature is everywhere nonzero must be Riemannian.

Keywords:homogeneous Randers manifolds, flag curvature, Douglas spaces, two-step nilpotent Lie groups
Categories:22E46, 53C30

2. CJM 2009 (vol 61 pp. 1201)

Arvanitoyeorgos, Andreas; Dzhepko, V. V.; Nikonorov, Yu. G.
Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups
A Riemannian manifold $(M,\rho)$ is called Einstein if the metric $\rho$ satisfies the condition \linebreak$\Ric (\rho)=c\cdot \rho$ for some constant $c$. This paper is devoted to the investigation of $G$-invariant Einstein metrics, with additional symmetries, on some homogeneous spaces $G/H$ of classical groups. As a consequence, we obtain new invariant Einstein metrics on some Stiefel manifolds $\SO(n)/\SO(l)$. Furthermore, we show that for any positive integer $p$ there exists a Stiefel manifold $\SO(n)/\SO(l)$ that admits at least $p$ $\SO(n)$-invariant Einstein metrics.

Keywords:Riemannian manifolds, homogeneous spaces, Einstein metrics, Stiefel manifolds
Categories:53C25, 53C30

3. CJM 2006 (vol 58 pp. 282)

Fels, M. E.; Renner, A. G.
Non-reductive Homogeneous Pseudo-Riemannian Manifolds of Dimension Four
A method, due to \'Elie Cartan, is used to give an algebraic classification of the non-reductive homogeneous pseudo-Riemannian manifolds of dimension four. Only one case with Lorentz signature can be Einstein without having constant curvature, and two cases with $(2,2)$ signature are Einstein of which one is Ricci-flat. If a four-dimensional non-reductive homogeneous pseudo-Riemannian manifold is simply connected, then it is shown to be diffeomorphic to $\reals^4$. All metrics for the simply connected non-reductive Einstein spaces are given explicitly. There are no non-reductive pseudo-Riemannian homogeneous spaces of dimension two and none of dimension three with connected isotropy subgroup.

Keywords:Homogeneous pseudo-Riemannian, Einstein space
Category:53C30

4. CJM 1998 (vol 50 pp. 1298)

Milson, Robert
Imprimitively generated Lie-algebraic Hamiltonians and separation of variables
Turbiner's conjecture posits that a Lie-algebraic Hamiltonian operator whose domain is a subset of the Euclidean plane admits a separation of variables. A proof of this conjecture is given in those cases where the generating Lie-algebra acts imprimitively. The general form of the conjecture is false. A counter-example is given based on the trigonometric Olshanetsky-Perelomov potential corresponding to the $A_2$ root system.

Categories:35Q40, 53C30, 81R05

5. CJM 1997 (vol 49 pp. 1323)

Sankaran, Parameswaran; Zvengrowski, Peter
Stable parallelizability of partially oriented flag manifolds II
In the first paper with the same title the authors were able to determine all partially oriented flag manifolds that are stably parallelizable or parallelizable, apart from four infinite families that were undecided. Here, using more delicate techniques (mainly K-theory), we settle these previously undecided families and show that none of the manifolds in them is stably parallelizable, apart from one 30-dimensional manifold which still remains undecided.

Categories:57R25, 55N15, 53C30

© Canadian Mathematical Society, 2014 : https://cms.math.ca/