1. CJM 2015 (vol 68 pp. 463)
 Sadykov, Rustam

The Weak bprinciple: Mumford Conjecture
In this note we introduce and study a new class of maps called
oriented colored broken submersions. This is the simplest class
of maps that satisfies a version of the bprinciple and in dimension
$2$ approximates the class of oriented submersions well in the
sense that
every oriented colored broken submersion of dimension $2$ to
a closed simply connected manifold is bordant to a submersion.
We show that the MadsenWeiss theorem (the standard Mumford Conjecture)
fits a general setting of the bprinciple. Namely, a version
of the bprinciple for
oriented colored broken submersions together with the Harer
stability theorem and MillerMorita theorem implies the MadsenWeiss
theorem.
Keywords:generalized cohomology theories, fold singularities, hprinciple, infinite loop spaces Categories:55N20, 53C23 

2. CJM 2015 (vol 67 pp. 1091)
 Mine, Kotaro; Yamashita, Atsushi

Metric Compactifications and Coarse Structures
Let $\mathbf{TB}$ be the category of totally bounded, locally
compact metric spaces
with the $C_0$ coarse structures. We show that if $X$ and $Y$
are in $\mathbf{TB}$ then $X$ and $Y$ are coarsely equivalent
if and only if their Higson coronas are homeomorphic. In fact,
the Higson corona functor gives an equivalence of categories
$\mathbf{TB}\to\mathbf{K}$, where $\mathbf{K}$ is the category
of compact metrizable spaces. We use this fact to show that the
continuously controlled coarse structure on a locally compact
space $X$ induced by some metrizable compactification $\tilde{X}$
is determined only by the topology of the remainder $\tilde{X}\setminus
X$.
Keywords:coarse geometry, Higson corona, continuously controlled coarse structure, uniform continuity, boundary at infinity Categories:18B30, 51F99, 53C23, 54C20 

3. CJM 2009 (vol 61 pp. 740)
 Caprace, PierreEmmanuel; Haglund, Frédéric

On Geometric Flats in the CAT(0) Realization of Coxeter Groups and Tits Buildings
Given a complete CAT(0) space $X$ endowed with a geometric action of a group $\Gamma$, it is known that if
$\Gamma$ contains a free abelian group of rank $n$, then $X$ contains a geometric flat of dimension $n$. We
prove the converse of this statement in the special case where $X$ is a convex subcomplex of the CAT(0)
realization of a Coxeter group $W$, and $\Gamma$ is a subgroup of $W$. In particular a convex cocompact subgroup
of a Coxeter group is Gromovhyperbolic if and only if it does not contain a free abelian group of rank 2. Our
result also provides an explicit control on geometric flats in the CAT(0) realization of arbitrary Tits
buildings.
Keywords:Coxeter group, flat rank, $\cat0$ space, building Categories:20F55, 51F15, 53C23, 20E42, 51E24 

4. CJM 1997 (vol 49 pp. 696)